State of California STATE WATER RESOURCES CONTROL BOARD

2005-2006

ANNUAL REPORT

FOR

STORM WATER DISCHARGES ASSOCIATED
WITH INDUSTRIAL ACTIVITIES

Reporting Period July 1, 2005 through June 30, 2006

An annual report is required to be submitted to your local Regional Water Quality Control Board (Regional Board) by July 1 of each year. This document must be certified and signed, under penalty of perjury, by the appropriate official of your company. Many of the Annual Report questions require an explanation. Please provide explanations on a separate sheet as an attachment. Retain a copy of the completed Annual Report for your records.

Please circle or highlight any information contained in Items A, B, and C below that is new or revised so we can update our records. Please remember that a Notice of Termination and new Notice of Intent are required whenever a facility operation is relocated or changes ownership.

If you have any questions, please contact your Regional Board Industrial Storm Water Permit Contact. The names, telephone numbers and e-mail addresses of the Regional Board contacts, as well as the Regional Board office addresses can be found at http://www.waterboards.ca.gov/stormwtr/contact.html. To find your Regional Board information, match the first digit of your WDID number with the corresponding number that appears in parenthesis on the first line of each Regional Board office.

GENERAL INFORMATION:

Facility WDID No: 937I018035

A. Facility Information:

Facility Business Name: SAN DIEGO INTERNATIONAL AIRPORT Contact Person: RICHARD GILB

Physical Address: 3225 NORTH HARBOR DRIVE e-mail: rgilb@san.org
City: SAN DIEGO State: CA Zip: 92101 Phone: (619) 400-2790

Standard Industrial Classification (SIC) Code(s): 4512 Transportation, Scheduled

4513 Air Courier Services

3721 Aircraft

B. Facility Operator Information:

Operator Name: SAN DIEGO COUNTY REGIONAL AIRPORT AUTHORITY Contact Person: RICHARD GILB

Mailing Address: P.O. BOX 82776 e-mail: rgilb@san.org
City: SAN DIEGO State: CA Zip: 92138-2776 Phone: (619) 400-2790

C. Facility Billing Information:

Operator Name: SAN DIEGO COUNTY REGIONAL AIRPORT AUTHORITY Contact Person: RICHARD GILB

Mailing Address: P.O. BOX 82776 e-mail: rgilb@san.org
City: SAN DIEGO State: CA Zip: 92138-2776 Phone: (619) 400-2790

SPECIFIC INFORMATION

MONITORING AND REPORTING PROGRAM

D.

E.

SA	MPLING .	AND AN	ALYSIS EXEMPT	IONS AND REDUCTION	<u>SNC</u>			
1.				facility exempt from co		g and ar	nalyzing	samples from two storm events in
		YES	Go to Item D.2				NO	Go to Section E
2.				exempt from collecting oriate certification if you				s from two storm events. Attach a or v.
	i. 🗌	Particip	pating in an Approv	red Group Monitoring I	Plan		Group	Name:
	ii. 🗌	Submit	ted No Exposure	Certification (NEC)			Date S	Submitted: / /
		Re-eva	luation Date:	/ /				
		Does fa	acility continue to s	atisfy NEC conditions	?		YES	NO
	iii.	Submit	ted Sampling Red	luction Certification	(SRC)		Date S	Submitted: / /
		Re-eva	luation Date:					
		Does fa	acility continue to s	atisfy SRC conditions	?		YES	□ NO
	iv.	Receive	ed Regional Board	Certification			Certific	cation Date:/
	v. 🗌	Receive	ed Local Agency C	Certification			Certific	cation Date: / /
3.	If you ch	necked b	oxes i or iii above,	were you scheduled t	o sam	ple one	storm ev	vent during the reporting year?
		YES	Go to Section E				NO	Go to Section F
4.	If you ch	necked b	oxes ii, iv, or v, go	to Section F.				
SA	MPLING .	AND AN	ALYSIS RESULTS	<u>8</u>				
1.	How ma	ny storm	n events did you sa	ample? <u>4</u>			2.i or iii.	ttach explanation (if you checked above, only attach explanation if you
2.				es from the first storm ((Section B.5 of the G			son that	produced a discharge during
		YES					NO	attach explanation (Please note that if

3. How many storm water discharge locations are at your facility? <u>14</u>

you do not sample the first storm event, you are still required to sample 2 storm events)

4.		reach storm event sampled, did you collect and analyze a nple from each of the facility's' storm water discharge locations?		YES,	go to l	tem E.6	⊠ NO	
5.		s sample collection or analysis reduced in accordance h Section B.7.d of the General Permit?		YES		NO, attac	h explanati	i on
		YES", attach documentation supporting your determination t two or more drainage areas are substantially identical.						
	Dat	te facility's drainage areas were last evaluated 11/3/05						
6.	We	ere all samples collected during the first hour of discharge?		YES	\boxtimes	NO, attac	h explanati	ion
7.		s <u>all</u> storm water sampling preceded by three (3) rking days without a storm water discharge?		YES		NO, attac	h explanati	ion
8.		ere there any discharges of storm water that had been approarily stored or contained? (such as from a pond)		YES		NO, go to	Item E.10	
9.	con	I you collect and analyze samples of temporarily stored or ntained storm water discharges from two storm events? one storm event if you checked item D.2.i or iii. above)		YES		NO, attac	h explanati	ion
10.	(TS	ction B.5. of the General Permit requires you to analyze storm wat SS), Specific Conductance (SC), Total Organic Carbon (TOC) or C present in storm water discharges in significant quantities, and ar neral Permit.	Oil and	Grease	e (O&C	3), other po	llutants likel	ly to
	a.	Does Table D contain any additional parameters related to your facility's SIC code(s)?		YES		NO, Go to	Item E.11	
	b.	Did you analyze all storm water samples for the applicable parameters listed in Table D?	\boxtimes	YES		NO		
	C.	If you did not analyze all storm water samples for the applicable Table D parameters, check one of the following reasons:						
		In prior sampling years, the parameter(s) have not bee consecutive sampling events. Attach explanation	en det	ected in	signif	icant quant	ties from tw	O'
		The parameter(s) is not likely to be present in storm we discharges in significant quantities based upon the fac						
		Other. Attach explanation						
11.		r each storm event sampled, attach a copy of the laboratory analytults using Form 1 or its equivalent. The following must be provide					pling and ar	nalysis
	•	Date and time of sample collection Name and title of sampler Parameters tested Name of analytical testing laboratory Discharge location identification	T T	esting re est methest dete ate of te opies of	nods u ction li esting	mits	alytical resu	ults

F. QUARTERLY VISUAL OBSERVATIONS

1.

2.

Sec	thorized Non-Storm Water Discharges ction B.3.b of the General Permit requires quarterly visual observations of all authorized non-storm water charges and their sources.												
a.	Do authorized non-storm water discharges occur at your facility?												
	YES On Go to Item F.2												
b.	Indicate whether you visually observed all authorized non-storm water discharges and their sources during the quarters when they were discharged. Attach an explanation for any "NO" answers . Indicate "N/A" for quarters without any authorized non-storm water discharges.												
	July-September YES NO NO October-December YES NO NA												
	January-March YES NO NA April-June YES NO NA												
c.	Use Form 2 to report quarterly visual observations of authorized non-storm water discharges or provide the following information:												
	 i. name of each authorized non-storm water discharge ii. date and time of observation iii. source and location of each authorized non-storm water discharge iv. characteristics of the discharge at its source and impacted drainage area/discharge location v. name, title, and signature of observer vi. any new or revised BMPs necessary to reduce or prevent pollutants in authorized non-storm water discharges. Provide new or revised BMP implementation date. 												
Sec	authorized Non-Storm Water Discharges ction B.3.a of the General Permit requires quarterly visual observations of all drainage areas to detect the presence inauthorized non-storm water discharges and their sources.												
a.	a. Indicate whether you visually observed all drainage areas to detect the presence of unauthorized non- storm water discharges and their sources. Attach an explanation for any "NO" answers.												
	July-September YES NO October-December YES NO												
	January-March X YES NO April-June X YES NO												
b.	Based upon the quarterly visual observations, were any unauthorized non-storm water discharges detected?												
	YES On Go to Item F.2.d												
c.	Have each of the unauthorized non-storm water discharges been eliminated or permitted?												
	YES NO Attach explanation												
d.	Use Form 3 to report quarterly unauthorized non-storm water discharge visual observations or provide the following information:												
	 i. name of each unauthorized non-storm water discharge ii. date and time of observation iii. source and location of each unauthorized non-storm water discharge iv. characteristics of the discharge at its source and impacted drainage area/discharge location v. name, title, and signature of observer vi. any corrective actions necessary to eliminate the source of each unauthorized non-storm water discharge and to clean impacted drainage areas. Provide date unauthorized non-storm water discharge(s) was eliminated or scheduled to be eliminated. 												

G. MONTHLY WET SEASON VISUAL OBSERVATIONS

Section B.4.a of the General Permit requires you to conduct monthly visual observations of storm water discharges at all storm water discharge locations during the wet season. These observations shall occur during the first hour of discharge or, in the case of temporarily stored or contained storm water, at the time of discharge.

	,		•	•		J						
	1.	Attach an explar occurred during s	nation for any "No cheduled facility o	ual observations of storn "answers. Include in perating hours that did who observed that there	n this explanation not result in a sto	n whether any e orm water disch	ligible storm	n events				
		October	YES	NO	February	YES	NO					
		November			March	\boxtimes						
		December	\boxtimes		April							
		January	\boxtimes		May							
	2.	Report monthly w	et season visual o	bservations using Forn	n 4 or provide the	e following info	mation:					
A.N. 1	N II I <i>i</i>	b. name and titlc. characteristicd. any new or reprovide new	es of the discharge evised BMPs nece or revised BMP im	(i.e., odor, color, etc.) assary to reduce or prevaplementation date.	vent pollutants in	storm water di						
		AL COMPREHEI SCE CHECKLIST	NSIVE SITE CO	MPLIANCE EVALUA	ATION (ACSCI	=)						
Н.	Section A.9 of the General Permit requires the facility operator to conduct one ACSCE in each reporting period (July 1-June 30). Evaluations must be conducted within 8-16 months of each other. The SWPPP and monitoring program shall be revised and implemented, as necessary, within 90 days of the evaluation. The checklist below includes the minimum steps necessary to complete a ACSCE. Indicate whether you have performed each step below. Attach an explanation for any "NO" answers.											
	1.		ed all potential pol as should be inspe	lutant sources and indu	ıstrial activities a	reas?	YES	☐ NO				
		during the lastoutdoor washprocess/manloading, unlowaste storag	n and rinse areas ufacturing areas ading, and transfe e/disposal areas ate generating area	r areas	materiavehicletruck prooftopvehicle	g repair, remodal storage areas /equipment sto arking and accor equipment are fueling/mainte orm water disch	s rage areas ess areas as nance areas	:				
	2.	<u> </u>	•	assure that its BMPs a	ddress existing	\square	\/F0					
	_			strial activities areas?			YES	∐ NO				
	3.	-		y to verify that the SWF ap items should be veri	-	\bowtie	YES	П NO				
		 facility bound 	-	•	storm water co			<u></u>				

- outline of all storm water drainage areas
- areas impacted by run-on

H.

- storm water discharges locations
- structural control measures such as catch basins, berms, containment areas, oil/water separators, etc.

4.	Have you reviewed all General Permit compliance records gaince the last annual evaluation?	generate	ed	XES	□ NO
	The following records should be reviewed:				
	 quarterly authorized non-storm water discharge visual observations monthly storm water discharge visual observation records of spills/leaks and associated clean-up/response activities 	•	quarterly unauthor visual observation Sampling and An preventative main maintenance recommends.	ns nalysis records ntenance inspec	
5.	Have you reviewed the major elements of the SWPPP to as compliance with the General Permit?	sure		XES	□ NO
	The following SWPPP items should be reviewed:				
	 pollution prevention team list of significant materials description of potential pollutant sources 	•	assessment of poidentification and implemented for	description of th	ne BMPs to be
6.	Have you reviewed your SWPPP to assure that a) the BMPs in reducing or preventing pollutants in storm water discharge non-storm water discharges, and b) the BMPs are being important.	es and a	authorized	XES	□ NO
	The following BMP categories should be reviewed:				
	 good housekeeping practices spill response employee training erosion control quality assurance 	•	preventative main material handling waste handling/si structural BMPs	and storage pra	actices
7.	Has all material handling equipment and equipment needed implement the SWPPP been inspected?	to		XES	□ NO
<u>AC</u>	SCE EVALUATION REPORT				
The	facility operator is required to provide an evaluation report the	nat inclu	ıdes:		
•	identification of personnel performing the evaluation the date(s) of the evaluation necessary SWPPP revisions	•	schedule for impl any incidents of r actions taken		PP revisions and the corrective
Use	Form 5 to report the results of your evaluation or develop a	n equiv	alent form.		
AC	SCE CERTIFICATION				
	facility operator is required to certify compliance with the Industriance, both the SWPPP and Monitoring Program must be				rmit. To certify
	ed upon your ACSCE, do you certify compliance with the Indvities Storm Water General Permit?	lustrial		X YES	□ NO
	ou answered "NO" attach an explanation to the ACSCE Eva ustrial Activities Storm Water General Permit.	aluation	Report why you a	re not in complia	ance with the

١.

J.

ATTACHMENT SUMMARY

	swer the questions below to help you determine what should be attached plicable) to questions 2-4 if you are not required to provide those attached		I report. Answer	NA (Not
1.	Have you attached Forms 1,2,3,4, and 5 or their equivalent?	XES (M	landatory)	
2.	If you conducted sampling and analysis, have you attached the laboratory analytical reports?	XES	☐ NO	☐ NA
3.	If you checked box II, III, IV, or V in item D.2 of this Annual Report, have you attached the first page of the appropriate certifications?	YES	□ NO	⊠ NA
4.	Have you attached an explanation for each "NO" answer in items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J?	⊠ YES	□ NO	☐ NA
AN	NUAL REPORT CERTIFICATION			
PE we per wh sub sig	m duly authorized to sign reports required by the INDUSTRIAL ACRMIT (see Standard Provision C.9) and I certify under penalty of I re prepared under my direction or supervision in accordance with sonnel properly gather and evaluate the information submitted. Et a manage the system, or those person directly responsible for gather and evaluate is, to the best of my knowledge and belief, true, accurate a mificant penalties for submitting false information, including the polations.	aw that this of a system destased on my the intering the intering the intering the intering the intering the intering the interior.	locument and a signed to ensure inquiry of the pe formation, the ir . I am aware th	Il attachments e that qualified erson or persons nformation eat there are
Pri	nted Name: PAUL MANASJAN			
Sig	nature: P. w.		Date:	130/06
Titl	e: <u>DIRECTOR, ENVIRONMENTAL AFFAIRS</u>		/	

ATTACHMENT 1

SAN DIEGO INTERNATIONAL AIRPORT (SDIA) ATTACHMENT #1

REQUIRED EXPLANATIONS, DISCUSSION, AND SUMMARY OF SAMPLING RESULTS

1) Explanations to General Information (pages 1-7 of the Annual Report)

The following explanations are provided where necessary to comply with the General Annual Report format. The item numbers are presented in the order of the Annual Report.

E.2

Although runoff samples from the first storm of the wet season were collected at two sites (as shown in Form 1), samples were not collected at all monitoring sites, and therefore, Monitoring and Reporting Program Information item E.2. has been answered "No." Runoff sampling during the first storm event was interrupted when an unauthorized discharge was discovered at the second sampling site (Site C-B07-7, see Form 4) and corrective actions were taken to mitigate the release. By the time the discharge was mitigated, the storm had ceased, precluding further runoff sampling.

E.5

Using a site evaluation completed in August of 2003, the airport had previously been divided into 6 general discharge areas based on similar land use and/or operations. At that time, the storm water monitoring program included six sample sites. In 2005, the Airport Authority initiated a project to analyze the hydrology of the airport and to evaluate the existing storm water sampling plan. The project resulted in the development of a new storm water sampling plan that replaces many of the previous sample sites and also added additional sampling locations. The new sampling plan identifies pollutants of concern and provides statistical power to future analysis of pollutant loads. Although the new sampling plan was finalized in November 2005, the plan was adequately developed in time to allow for full implementation during the 2005-2006 wet-season. The new sampling plan divides the airport into fourteen drainage basins. Ten sites within those 14 basins have been chosen to represent the areas of industrial activity at the airport.

The ten area sample identifiers and a brief description of each location are:

Site ID	Location Description
C-B01-1	Grated inlet inside of zipper line, south of FBO, north of runway
C-B03-2	Grated inlet inside of zipper line, south of runway, near B1-D sign
C-B05-3	Grated inlet north of taxiway C, east of taxiway D
C-B05-4	Grated inlet, south of runway, north of generator yard
C-B06-5	Grated inlet southeast of control tower
C-B07-6	Inlet pipe in manhole west of oil-water separator in Cargo Area
C-B07-7	Grated inlet at south end of Cargo Area, west of West Wing
C-B08-8	Manhole near Gate 1
C-B04-9	Grated inlet outside perimeter fence, near beacon, west of Harbor Drive
SNPTDY-3	Grated inlet, west of sidewalk, west side entrance SanPark – Harbor Drive

SAN DIEGO INTERNATIONAL AIRPORT (SDIA) ATTACHMENT #1

REQUIRED EXPLANATIONS, DISCUSSION, AND SUMMARY OF SAMPLING RESULTS

E.6

As noted in previous Annual Reports, program experience has led to the practical determination that sample collection can only be accomplished during storm events with a rainfall intensity of at least 0.10 inches per hour over at least a two-hour period. With ten sample sites identified for the monitoring program, practice has shown that more than one hour of time elapses between the initiation of sampling and the collection of the tenth sample. Such was the case again this year, and therefore, not all samples were collected during the first hour of discharge.

G.1

During the months of November, 2005 and May, 2006, there were no rain events occurring during daylight hours of sufficient intensity or duration to allow for visual observations. The history of storm events during daylight hours for this reporting period is provided on Form 4.

2) <u>Discussion of Analytical Results</u>

The following information provides a brief discussion of the analytical data included with this Annual Report (see Form 1 and attached Analytical Lab Reports). A total of 25 samples were taken during the reporting year. Based in part on the information below, the Airport Authority continues to evaluate the effectiveness of the BMPs being implemented at the airport.

рΗ

Three of the analyzed water samples had pH readings that fell outside of both the USEPA Multi-Sector Permit Benchmark and list of other recommended "Federal, State, Regional (FSR) Benchmark Values" of $6.0-9.0\,\mathrm{s.u.}$ Site C-B04-9 had a pH reading of $5.8\,\mathrm{pH}$ units (October 17, 2005), Site C-B06-5 had a pH reading of 5.7 (February 27, 2006), and Site C-B07-6 had a pH reading of 5.96 (February 27, 2006). These values are close to the benchmark values and not considered indicative of any particular concern.

TSS

Five of the samples contained concentrations of total suspended solids (TSS) above the USEPA Multi-Sector Permit Benchmark and FSR Benchmark Value of 50 mg/L. Site C-B04-9 had a concentration of 79.0 mg/L (October 17, 2005), Site C-B07-7 had a concentration of 56.0 mg/L (February 27, 2006), and Site C-B04-9 had a concentration of 217 mg/L (February 27, 2006). Except for the concentration recorded at Site C-04-9, these concentrations are close to the benchmark values and not considered indicative of any particular concern. On January 22, 2006, a City of San Diego water main broke in the immediate vicinity of Site C-04-9. The water line break displaced a silty, sandy soil over the ground surface. The TSS concentration recorded at Site C-B04-9 on February 27, 2006, suggests that the fine silty, sandy soil from this break had not been cleaned up entirely. The sample collected at this same location on March 29, 2006, contained at TSS concentration only 18 mg/L, well below the benchmark value.

SAN DIEGO INTERNATIONAL AIRPORT (SDIA) ATTACHMENT #1

REQUIRED EXPLANATIONS, DISCUSSION, AND SUMMARY OF SAMPLING RESULTS

Specific Conductivity

None of the samples analyzed had a specific conductivity reading that exceeded the Multi-Sector Permit Benchmark and FSR Benchmark Value of 250 µmhos/cm.

Oil and Grease

Oil and grease was analyzed as hexane extractable materials (HEM). No samples exceeded the USEPA Multi-Sector Permit Benchmark of 15.0 mg/L.

TPH (gasoline)

None of the samples had a total petroleum hydrocarbons (TPH) as gasoline concentration that exceeded the FSR Benchmark Value of 0.5 mg/L. There is no USEPA Multi-Sector Benchmark for TPH (gasoline).

MBAS

Samples were analyzed for methylene blue active substances (MBAS) to detect the presence of detergents. There is no USEPA Multi-Sector Benchmark or FSR Benchmark Value associated with MBAS. Nine samples had detectable levels of MBAS during the reporting year. Detectable levels ranged from 0.100 – 0.150 mg/L MBAS. These concentrations are consistent with historic data collected at this airport, and are therefore not indicative of a significant concern.

TRPH

Eleven samples of the 25 samples had total recoverable petroleum hydrocarbons (TRPH) concentrations above the method detection limit of 1.0 mg/L. There are is no USEPA Multi-Sector Permit Benchmark or FSR Benchmark Value for TRPH. Of the detected concentrations, TRPH ranged from 2.5 to 48 mg/L. The sample having a concentration of 48 mg/L was collected at Site SNPTDY-3 on February 27, 2006, which is located in a parking lot. These concentrations are not considered indicative of a significant concern.

BTEX (Benzene, Toluene, Ethylbenzene, Xylene)

None of the other samples had detectable levels of BTEX.

Glycols

Glycol was not detected in any of the samples.

Total Iron

Seven samples had total iron concentrations that exceeded the USEPA Multi-Sector Permit Benchmark and Federal, State, and Regional Benchmark of 1.0 mg/L. Site C-B04-9 had a concentration of 2.9 mg/L (October 17, 2005), Site C-B06-5 had a concentration of 1.1 mg/L (February 27, 2006), Site C-B07-6 had concentrations of 3.0 mg/L and 1.8 mg/L (February 27, 2006 and March 10, 2006), Site C-B07-7 had concentrations of 1.4 mg/L and 2.2 mg/L (February 27, 2006 and March 10, 2006), and Site C-B04-9 had a concentration of 8.5 mg/L (February 27, 2006). The significance of these and all the heavy metal results are discussed in the summary of the analytical results below.

SAN DIEGO INTERNATIONAL AIRPORT (SDIA) ATTACHMENT #1

REQUIRED EXPLANATIONS, DISCUSSION, AND SUMMARY OF SAMPLING RESULTS

Total Zinc

Fourteen samples had total zinc concentrations that exceeded the USEPA Multi-Sector Permit Benchmark and Federal, State, and Regional Benchmark value of 0.117 mg/L. Samples over the benchmark ranged from 0.11 mg/L to 880 mg/L. Sites C-B07-7 and C-B04-9 had the highest concentrations, at 880 and 790 mg/L, respectively, on October 17, 2005.

Total Lead

None of the samples had total lead concentrations that exceeded the USEPA Multi-Sector Benchmark of 0.0816 mg/L. The FSR Benchmark Value is 0.020 mg/L. Considering that the method detection limit for the two samples collected October 17, 2005 (Sites C-B07-7 and C-B04-9), was 40 μ g/L, it is possible the FSR Benchmark Value was exceed on this occasion.

Dissolved Lead

None of the samples had dissolved lead concentrations over the USEPA Multi-Sector Permit Benchmark of 0.0816 mg/L. The FSR Benchmark Value is 0.020 mg/L and is undifferentiated between total and dissolved lead. Considering that the method detection limit for the two samples collected October 17, 2005 (Sites C-B07-7 and C-B04-9), was 40 μ g/L, it is possible the FSR Benchmark Value was exceed on this occasion.

Total Aluminum

Seven samples had total aluminum concentrations that exceeded the USEPA Multi-Sector Permit Benchmark and FSR Benchmark Value of 0.750 mg/L. Site C-B04-9 had a concentration of 2.2 mg/L (October 17, 2005), Site C-B05-3 had a concentration of 0.95 mg/L (February 27, 2006), Site C-B06-5 had a concentration of 0.77 mg/L (February 27, 2006), Site C-B07-7 had concentrations of 1.1 mg/L and 1.7 mg/L (February 27, 2006 and March 10, 2006), Site C-B04-9 had a concentration of 6.2 mg/L (February 27, 2006), and Site C-B07-6 had a concentration of 1.1 mg/L (March 10, 2006).

Total Copper

Thirteen samples had total copper concentrations that exceeded the USEPA Multi-Sector Permit Benchmark of 0.0636 mg/L. The samples results above the benchmark ranged from 0.073 to 0.360 mg/L of total copper. Of the samples that exceed the benchmark, Site C-B05-3 had the highest concentration on February 27, 2006, at 0.360 mg/L. All but four of the samples had total copper concentrations that exceeded the FSR Benchmark Value of 0.030 mg/L.

Dissolved Copper

Eleven samples had dissolved copper concentrations above the USEPA Multi-Sector Permit Benchmark of 0.0636 mg/L. Samples above this benchmark ranged from 0.066 to 0.310 mg/L. Sites C-B05-3 and C-B06-5 had the highest concentration on February 27, 2006, at 0.310 mg/L. Sixteen samples had dissolved copper concentrations above the FSR Benchmark Value of 0.030 mg/L.

SAN DIEGO INTERNATIONAL AIRPORT (SDIA) ATTACHMENT #1

REQUIRED EXPLANATIONS, DISCUSSION, AND SUMMARY OF SAMPLING RESULTS

BOD/COD

Nine samples had a biological oxygen demand (BOD) level above the USEPA Multi-Sector Permit Benchmark and FSR Benchmark Value of 30.0 mg/L. Samples above the benchmark ranged from 35.0 to 116 mg/L.

Seven samples had a chemical oxygen demand (COD) level above the USEPA Multi-Sector Permit Benchmark and FSR Benchmark Value of 120.0 mg/L. Samples above the benchmark ranged from 142.0 to 230.0 mg/L.

Ammonia

None of the samples contained concentrations of ammonia that exceeded the USEPA Multi-Sector Permit Benchmark or FSR Benchmark Value of 19 mg/L Ammonia-N.

3) Summary of Analytical Results

A total of 446 analyses were performed on the 25 samples collected during the 2005-2006 reporting period. Of these 446 analyses, a total of 63 analyses exceeded either USEPA Multi-Sector Permit Benchmarks or FSR Benchmark Values (for those analytes with established benchmarks). Sites C-B07-6 and C-B07-7 accounted for the majority (over 50%) of the exceedances. Total iron, total zinc, total aluminum, total and dissolved copper, BOD, and COD were the parameters with exceedances at these sites. These sites are located near cargo areas and a ground service vehicle repair station. Site C-B07-6 had 15 exceedances over the sampling events (24% of exceedances), and Site C-B07-7 had 23 exceedances over the sampling events (37% of exceedances). The Airport Authority will use this data to re-evaluate the adequacy and effectiveness of the BMPs implemented in the vicinity of these two sample sites, and to identify any needed improvements.

The analytical results for stormwater samples collected during the 2005-2006 reporting period are consistent with historic sampling data at the airport. Total copper, dissolved copper, total lead, and total zinc have been consistently identified as contaminants of concern in previous runoff monitoring. Past analysis has suggested that tire and brake pad wear from landing aircraft and/or vehicles may be a likely source of heavy metals. In response, the Airport Authority developed a revised stormwater sampling plan designed to identify the sources of these heavy metals. The Airport Authority is simultaneously evaluating the BMPs currently in place to control and eliminate heavy metal concentrations in stormwater runoff at the airport. These two efforts are intended to outline new, additional, or modified BMPs that can be implemented to control or eliminate these contaminants.

The Airport Authority implemented a new storm water sampling plan during the 2005-2006 reporting year. The plan revised and added sampling locations to better represent the industrial activities at the airport and to better assess BMP effectiveness. As more storm water data is collected in the future, the increased statistical power of the dataset will be used to determine long-term adequacy and effectiveness of both BMPs and the runoff monitoring program.

ATTACHMENT 2

Legend

Storm Drain LinesSampling LocationsAirport Boundary

Storm Drain System and Sampling Locations

San Diego International Airport

FORMS

Form 1 - page 1 of 12

FORM 1 - SAMPLING ANALYSIS RESULTS 2005-2006 ANNUAL REPORT

FIRST STORM EVENT

· If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

· When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

Make additional copies of this form as necessary.

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

DESCRIBE DISCHARGE LOCATION Example: NW Out Fall	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				4	ANALYTICAL RESULTS for First Storm Event	L RESUL	TS t			,
*				Basic	Basic Parameters				Other Parameters	ameters		
1			Hd	TSS	SC	O&G (HEM)	втех	MBAS	TPH (gas)	ТКРН	TOTAL IRON Fet	TOTAL ZINC Zn _t
C-B07-7 C-B04-9	10/17/05 1:30 PM 10/17/05 1:30 PM	12:10 PM 12:10 PM	6.22 6.22	27.0 27.0	87.0 87.0	2.20	< 0.50 < 0.50		< 50 < 50	4.7	0.71	880
					in the state of th							
				en en stadiosista en	in property of	A Company of the Comp	Service of the servic					
	TEST REPOF	TEST REPORTING UNITS:	pH units	mg/L	mp/soum	mg/L	hg/L	µg/L	hg/L	mg/L	mg/L	mg/L
_	TEST METHOD DETECTION LIMIT:	CTION LIMIT:	0.100	1.0	0.100	1.0	0.50	0.100	20	1.0	0.52	100
	TEST ME	TEST METHOD USED: EPA 150.1 EPA 160.2	EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	EPA EPA 8021B/8015B		EPA 8021B/ 8015B	EPA 418.1	EPA 6010B	EPA 6020
	ANALYZED BY	ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	YAB	LAB	AB.	a V	9	-	-

MBAS - Methylene Blue Active Substances ISS - Total Suspended Solids

SC - Specific Conductance

TPH - Total Petroleum Hydrocarbons

O&G - Oil & Grease (HEM - Hexane Extractable Material)

LABLABLABBTEX - Benzene, Toluene, Ethylbenzene, Xylenes TRPH - Total Recoverable Petroleum Hydrocarbons

Form 1 - page 2 of 12

FORM 1 - SAMPLING ANALYSIS RESULTS ANNUAL REPORT 2005 - 2006

FIRST STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: < 05) If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE;

AMMONIA GLYCOLS mg/L as N 0.610 0.610 mg/L 141.00 141.00 000 mg/L 800 35.0 35.0 mg/L < 1.0-10 < 1.0-10 8 mg/L ANALYTICAL RESULTS for First Storm Event DISSOLVED COPPER Other Parameters 160 hg/L 160 TOTAL ກັວ 210 210 hg/L ALUMINUM TOTAL 0.60 0.60 mg/L Ą DISSOLVED LEAD Pbd × 40 < 40 훰 TOTAL LEAD ۸ 40 < 40 hg/L Pb 4 DISCHARGE TEST REPORTING UNITS: TEST METHOD DETECTION LIMIT: STARTED 12:10 PM 12:10 PM TIME DATE/TIME OF COLLECTION 10/17/05 1:30 PM 10/17/05 1:30 PM SAMPLE DISCHARGE DESCRIBE LOCATION Example: NW Out Fall C-B04-9 C-B07-7

VOC - Volatile Organic Compounds

LAB

LAB

ANALYZED BY (SELF/LAB):

COD - Chemical Oxygen Demand BOD - Biological Oxygen Demand

EPA 8015

EPA 350.1

EPA 405.1 EPA 410.4

EPA 624

EPA 6020

EPA 6020

EPA 6010B

EPA 200.8

EPA 6020

TEST METHOD USED:

20

0.100

0.100

2.00

1.0-10

100

100

0.50

40

LAB

LAB

LAB

ΥB

LAB

LAB

LAB

Form 1 - page 3 of 12

FORM 1 - SAMPLING ANALYSIS RESULTS ANNUAL REPORT 2005 2006

SECOND STORM EVENT

· If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE

DESCRIBE DISCHARGE LOCATION Example: NW Out Fall	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				1 4 Q	ANALYTICAL RESULTS for Second Storm Event	AL RESUI Storm Ev	TS ent			
				Basic Pa	Basic Parameters				Other Parameters	meters		
			표	TSS	သွ	O&G (HEM)	втех	MBAS	TPH (gas)	TRPH	TOTAL IRON Fe _t	TOTAL ZINC Zn _t
C-B01-1	02/27/06 12:00 AM	11:25 PM	7.17	4.00	52.7	< 2.00	< 0.50	< 0.100	< 50	< 1.0	0.064	< 0.024
C-B03-2	02/27/06 12:30 AM	11:25 PM	6.12	8.00	42.5	< 2.00	< 0.50	< 0.100	< 50	< 1.0	0.38	0.059
C-B05-3	02/27/06 1:00 AM	11:25 PM	6.19	43.0	135	2.2	< 0.50	0.140	< 50	3.7	0.87	0.082
C-B05-4	02/27/06 1:30 AM	11:25 PM	6.32	32.0	207	2.40	< 0.50	0.130	< 50	< 1.0	0.87	0.082
C-B06-5	02/27/06 2:00 AM	11:25 PM	5.70	24.0	106	2.00	< 0.50	0.110	< 20	< 1.0	-	0.15
C-B07-6	02/27/06 2:30 AM	11:25 PM	5.96	18.0	110	< 2.00	1.0 (xylenes _t)	0.120	77	< 1.0	3.0	0.71
	TEST REPO	TEST REPORTING UNITS:	pH units	mg/L	hmhos/cm	mg/L	µg/L	mg/L	T/Brl	mg/L	mg/L	mg/L
	TEST METHOD DETECTION LIMIT:	CTION LIMIT:	0.100	1.00	0.100	0.1	0:20	0.100	20	1.0	0.064	0.024
	TEST ME	TEST METHOD USED:	EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	EPA 8021B/8015B	EPA 425.1	EPA 8021B/ 8015B	EPA 418.1	EPA 200.7	EPA 200.7
	ANALYZED BY	ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	Ϋ́	LAB

MBAS - Methylene Blue Active Substances TSS - Total Suspended Solids

SC - Specific Conductance

TPH - Total Petroleum Hydrocarbons

O&G - Oil & Grease (HEM - Hexane Extractable Material)

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes TRPH - Total Recoverable Petroleum Hydrocarbons

Form 1 - page 4 of 12

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2005-2006

SECOND STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

		T	ν,	Т	-		····					œ		7
**************************************			STOOLS.	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, v,	< 5.0	> 5.0	× 5.0	< 5.0	mg/L	5.0	EPA 8015B	LAB	
			AMMONIA as N	2.250	2.00	7.00	4.50	3.75	1.50	mg/L	0.100	EPA 350.1	LAB	emand
The second secon			COD	17.0	48.0	143.0	151.0	81.0	70.0	mg/L	0.100	EPA 410.4	LAB	COD - Chemical Oxygen Demand
			BOD	6.10	11.2	58.0	64.0	38.0	28.0	mg/L	2.00	EPA 405.1	LAB	COD - Chem
	ESULTS m Event	ters	VOC	< 1.0 - 10	< 1.0 - 10	< 1.0 - 10	< 1.0 - 10	< 1.0 - 10	1.0 (m,p-xylene)	hg/L	1.0 - 10	EPA 624	LAB	
	ANALYTICAL RESULTS for Second Storm Event	Other Parameters	DISSOLVED COPPER Cu _d	< 10	130	310	200	310	34	µg/L	10	EPA 200.8	LAB	ר Demand
	ANALY for Sec	ŏ	TOTAL COPPER Cu _t	11	180	360	250	320	240	µg/L	10	EPA 200.8	LAB	BOD - Biological Oxygen Demand
			TOTAL ALUMINUM Alt	< 0.063	0.33	0.95	29.0	0.77	0.34	mg/L	0.063	EPA 200.7	LAB	BOD - Bio
			DISSOLVED LEAD Pb _d	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	µg/L	4.0	EPA 200.8	LAB	ic Compounds
			TOTAL LEAD Pb _t	4.8	< 4.0	6.1	4.8	6.4	23	hg/L	4.0	EPA 200.8	LAB	VOC - Volatile Organic Compounds
	TIME DISCHARGE STARTED			11:25 PM	11:25 PM	11:25 PM	11:25 PM	11:25 PM	11:25 PM	TEST REPORTING UNITS:	ECTION LIMIT:	TEST METHOD USED:	ANALYZED BY (SELF/LAB):	
	DATE/TIME OF SAMPLE COLLECTION			02/27/06 12:00 AM	02/27/06 12:30 AM	02/27/06 1:00 AM	02/27/06 1:30 AM	02/27/06 2:00 AM	02/27/06 2:30 AM	TEST REPO	TEST METHOD DETECTION LIMIT:	TEST ME	ANALYZED B	
	DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B01-1		C-B05-3	C-B05-4	- 3	C-B07-6					

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2005-2006

SECOND STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the • When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

DESCRIBE DISCHARGE LOCATION Example: NW Out Fall	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				 4 9	ANALYTICAL RESULTS for Second Storm Event	AL RESU Storm E	LTS vent			
							Other P	Other Parameters				
			Hd	TSS	၁ွ	O&G (HEM)	ВТЕХ	MBAS	TPH (gas)	ТКРН	TOTAL IRON Fe _t	TOTAL ZINC Zn _t
	02/27/06 2:30 AM	11:25 PM	6.33	56.0	186	5.60	< 0.50	0.110	< 50	4.4	1.4	0.86
	02/27/06 3:00 AM	11:25 PM	7.21	14.0	203	2.20	< 0.50	< 0.100	> 20	2.5	0.40	0.13
	02/27/06 3:30 AM	11:25 PM	6.89	217	148	4.30	< 0.50	0.150	> 20	< 1.0	8.5	0.14
SNPTDY-3	02/27/06 4:00 AM	11:25 PM	6.83	24.0	25.0	< 2.00	< 0.50	< 0.100	< 50	48	0.51	0.11
									٠.			: : :
	TEST REP(TEST REPORTING UNITS:	pH units	mg/L	mp/soum	mg/L	hg/L	mg/L	µg/L	mg/L	mg/L	mg/L
	TEST METHOD DETECTION LIMIT:	ECTION LIMIT:	0.100	1.00	0.100	1.0	0.50	0.100	20	1.0	0.064	0.024
	TEST N	TEST METHOD USED:	EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	EPA 8021B/8015	EPA 425.1	EPA 8021B/ 8015B	EPA 418.1	EPA 200.7	EPA 200.7
AN TSS - Total Suspended Solids	(ALYZED	ANALYZED BY (SELF/LAB): LA	LAB	LAB	LAB	LAB	LAB	LAB	l	LAB	LAB	LAB
MBAS - Methylene	Substances	The second secon		TPH - Total Po	סאס - סאס TPH - Total Petroleum Hydrocarbons	rease (HEM - ocarbons	الالالالالالالالالالالالالالالالالالال	table Material)	뀲	nzene, Tolueni ecoverable Pe	BTEX - Benzene, Toluene, Ethylbenzene, Xylenes TRPH - Total Recoverable Petroleum Hydrocarbons	, Xylenes arbons

Form 1 - page 6 of 12

2005-- 2006 ANNUAL REPORT FORM 1 - SAMPLING ANALYSIS RESULTS

SECOND STORM EVENT

· If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical · When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate of the detection limit (example: <.05)

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

		T)LS	Ţ		· ·					5B		7
			A GLYCOLS	\ \ \ \	, , ,) () (< 5.0			mg/L 5.0	EPA 8015B	-	8
1/2/			AMMONIA as N	3.25	1 00	0.500	0.500		11 2000	0.100	EPA 350.1	2	mand
7			000	142	49.0	48.0	48.0			0.100	EPA 410.4	av -	COD - Chemical Oxygen Demand
E:			BOD	72	50	116	23.0		l/0m	2.00	EPA 405.1	AA	COD - Chemic
SIGNATURE;	ESULTS m Event	ters	200	< 1.0 - 10	< 1.0 - 10	< 1.0 - 10	< 1.0 - 10		ua/L	1.0-10.0	EPA 624	LAB	1
	ANALYTICAL RESULTS for Second Storm Event	Other Parameters	DISSOLVED COPPER Cu _d	160	23	26	14		na/L	10	EPA 200.8	LAB	ı Demand
nental Affairs	ANAL for Se	0	TOTAL COPPER Cu _t	230	73	45	23		µg/L	2 9	EPA 200.8	LAB	BOD - Biological Oxygen Demand
TITLE: Manager, Environmental Affairs			TOTAL ALUMINUM Al _t	1.1	0.16	6.2	0.37		mg/L	0.063	EPA 200.7	LAB	BOD - Bio
TITLE: Man			DISSOLVED LEAD Pb _d	< 4.0	< 4.0	< 4.0	< 4.0		µg/L	4.0	EPA 200.8	LAB	Organic Compounds
d Gilb			TOTAL LEAD Pb _t	17	< 4.0	10	4.3		µg/L	4.0	EPA 200.8	LAB	VOC - Volatile Organ
MPLES: Richan	TIME DISCHARGE STARTED			11:25 PM	11:25 PM	11:25 PM	11:25 PM		TEST REPORTING UNITS:	CTION LIMIT:	TEST METHOD USED:	' (SELF/LAB):	
NAME OF PERSON COLLECTING SAMPLES: Richard Gilb	DATE/TIME OF SAMPLE COLLECTION			02/27/06 2:30 AM	02/27/06 3:00 AM	02/27/06 3:30 AM	02/27/06 4:00 AM	A CARACTER CONTRACTOR OF THE C	TEST REPOF	TEST METHOD DETECTION LIMIT:	TEST ME	ANALYZED BY (SELF/LAB):	
NAME OF PERS	DESCRIBE DISCHARGE LOCATION Example: NW Out Fall)	- 4	SNPTDY-3 (0						

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2005 - 2006

THIRD STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the or when analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank · Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

												
		TOTAL ZINC Zn _t	0.22	0.079	0.30	0.65	4		ma/L	0.024	EPA 200.7	LAB
		TOTAL IRON Fe _t	0.30	0.63	7	2.2			mg/L	0.064	EPA 200.7	LAB
		ТКРН	2.0	< 1.0	<u>, , , , , , , , , , , , , , , , , , , </u>	2.0			mg/L	1.0	EPA 418.1	LAB
int TS		TPH (gas)	< 50	< 50	< 50	< 50	#RANKANT		µg/L	20	EPA 8021B/ 8015B	LAB LAB
L RESUL torm Eve	Other Parameters	MBAS	< 0.100	< 0.100	< 0.100	< 0.100			mg/L	0.100	EPA 425.1	LAB
ANALYTICAL RESULTS for Third Storm Event	Other Pa	BTEX	< 0.50	< 0.50	< 0.50	< 0.50			hg/L	0.50	EPA 8021B/8015	LAB
AN		O&G (HEM)	2.00	2.50	3.10	4.30			mg/L	1.0	EPA 1664	LAB LAB LAB LAB
		SC	88.0	98.3	135	65.4			hmhos/cm	0.100	EPA 120.1	LAB
		TSS	9.00	9.00	70.0	89.0			mg/L	1.00	EPA 160.2	LAB
		Ħd	6.85	6.18	6.27	6.27			pH units	0.100	EPA 150.1	LAB
TIME DISCHARGE STARTED			12:00 AM	12:00 AM	12:00 AM	12:00 AM			LEST REPORTING UNITS:	CTION LIMIT:	TEST METHOD USED:	Y (SELF/LAB): LAE
DATE/TIME OF SAMPLE COLLECTION			03/10/06 1:00 AM	03/10/06 1:30 AM	03/10/06 2:00 AM	03/10/06 2:30 AM		and the state of t	LEST REPOR	TEST METHOD DETECTION LIMIT:	TEST ME	VALYZED B
DESCRIBE DISCHARGE LOCATION Example: NW Out Fall				Ž.	9	C-B07-7 0				Ш́		Al TSS - Total Suspended Solids

MBAS - Methylene Blue Active Substances

O&G - Oil & Grease (HEM - Hexane Extractable Material BTEX - Benzene, Toluene, Ethylbenzene, Xylenes TPH - Total Petroleum Hydrocarbons TRPH - Total Recoverable Petroleum Hydrocarbons

Form 1 - page 8 of 12

200 ≥ 2006 ANNUAL REPORT FORM 1 - SAMPLING ANALYSIS RESULTS

THIRD STORM EVENT

· if analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

**			GLYCOLS		< 5.0	< 5.0	< 5.0	< 5.0			mg/L	5.0	EPA 8015B	0	9
			AMMONIA as N		88.0	1.63	0.740	1.08			mg/L	0.100	EPA 350.1	- V	mand
And the second s			COD	000	78.0	40.0	142	187			mg/L	0.100	EPA 410.4	AB	COD - Chemical Oxygen Demand
			ВОБ	4	7 - 0	0.71	74.0	93.0			mg/L	2.00	EPA 405.1	LAB	COD - Chemi
on position of	ESULTS 'm Event	ters	000	7 4 0 40	, , , ,	25.	< 1.0-10	< 1.0-10			hg/L	1.0 - 10	EPA 624	LAB	
	ANALYTICAL RESULTS for Second Storm Event	Other Parameters	DISSOLVED COPPER Cu _d	S	130	3	76	99			hg/L	10	EPA 200.8	LAB	Demand
	ANAL for Se	0	TOTAL COPPER Cu _t	87	120	3	110	95			hg/L	10	EPA 200.8	LAB	BOD - Biological Oxygen Demand
			TOTAL ALUMINUM Al _t	0.28	09.0	}	-	1.7			mg/L	0.063	EPA 200.7	LAB	BOD - Bic
			DISSOLVED LEAD Pb _d	< 4.0	< 4.0		< 4.0	< 4.0	A har Violente per la monte de la company de		hg/L	4.0	EPA 200.8	LAB	Organic Compounds
			TOTAL LEAD Pb _t	< 4.0	< 4.0	· · · · · · · · · · · · · · · · · · ·	V.4.U	14			hg/L	4.0	EPA 200.8	LAB	VOC - Volatile Orga
	TIME DISCHARGE STARTED			12:00 AM	12:00 AM	12:00 ANA	12.00 AIV	12:00 AM		01411	EST REPORTING UNITS:	CTION LIMIT:	TEST METHOD USED:		
	DATE/TIME OF SAMPLE COLLECTION			03/10/06 1:00 AM	03/10/06 1:30 AM	03/10/06 2:00 AM	100 00 00 00 00 00 00 00 00 00 00 00 00	03/10/06 2:30 AM		יסקים דמחד	IESI KEPO	TEST METHOD DETECTION LIMIT:	TEST ME	ANALYZED BY (SELF/LAB):	
	DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B05-3	C-B06-5	C-B07-6	\$	0 /-/0g-\)			•	Ш	· · · · · · · · · · · · · · · · · · ·		

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2002 2006

FOURTH STORM EVENT

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

DESCRIBE DISCHARGE LOCATION												
Example: NW Out Fall	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				AN	ANALYTICAL RESULTS for Fourth Storm Event	AL RESU	LTS ent			
							Other Pa	Other Parameters				
			H.	TSS	sc	O&G (HEM)	ВТЕХ	MBAS	TPH (gas)	ТКРН	TOTAL IRON Fe _t	TOTAL ZINC Zn _t
C-B01-1	03/28/06 10:10 PM	10:00 PM	7.40	5.00	64.5	< 2.00	< 0.50	< 0.100	< 50	0 4 7	V 00 0 A	7000
C-B03-2 0:	03/28/06 10:40 PM	10:00 PM	7.20	8.00	54.0	< 2.00	< 0.50	< 0.100	3 2	· ·	4 00.00	< 0.024
C-B05-3 00	03/28/06 11:10 PM	10:00 PM	6.80	28.0	27.1	< 2.00	< 0.50	0400	3 6	<u>?</u>	40.00	0.065
C-B05-4 00	03/28/06 11:40 PM	10:00 PM	7.30	24 N	70.3	3.45		o. 100	6 /	<u>o</u>	0.17	0.18
C-B06-5	03/29/06 12:10 AM	40.00 DA4	3) · · ·	40.0	3.10	06.0 >	0.120	× 20	< 1.0	0.13	< 0.024
	2/20/06 12:10 MINI	10.00 PIM	0.20	3.00	21.0	< 2.00	< 0.50	< 0.100	< 50	< 1.0	0.11	< 0.024
	US/23/UD 12:40 AIM	10:00 PM	7.00	14.0	30.1	< 2.00	< 0.50	< 0.100	< 50	× 1.0	0.083	0.19
	TEST REPORTING UNITS:	TING UNITS:	pH units	mg/L	µmhos/cm	mg/L	ng/L	ma/L	na/L	/om	l).om	7 20 30
TES	TEST METHOD DETECTION LIMIT:	CTION LIMIT:	0.100	1.00	0.100	1.0	0.50	0.100	2 05	1.0	0.064	111g/L
	TEST MEI	TEST METHOD USED:	EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	EPA 8021B/8015	EPA 425.1	EPA 8021B/ 8015B	EPA 418.1	< 50 EPA 200.7	EPA 200.7
AN STORY Total Supposed by Annual Called	ALYZED BY	(SELF/LAB): LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LA _B	AB	AB

TSS - Total Suspended Solids MBAS - Methylene Blue Active Substances

SC - Specific Conductance

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes TRPH - Total Recoverable Petroleum Hydrocarbons O&G - Oil & Grease (HEM - Hexane Extractable Material TPH - Total Petroleum Hydrocarbons

Form 1 - page 10 of 12

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2005 - 2006

FOURTH STORM EVENT

· if analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

· Make additional copies of this form as necessary.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE:

						-								
		GLYCOLS		< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	/om	g/r	EPA 8015B	<u> </u>	EAB
		AMMONIA as N		0.240	0.310	0.490	0.530	0.470	0.410	l/pm	0.100	EPA 350.1	2	LAB mand
		СОБ	007	< 0.100 6 4 6 6	< 0.100 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	< 0.100	< 0.100	< 0.100	< 0.100	l/bu	0.100	EPA 410.4	α -	COD - Chemical Oxygen Demand
		BOD	9	3.00 3.00 3.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00 5	00.5	< 2.00	3.60	< 2.00	< 2.00	ma/L	2.00	EPA 405.1	AB	COD - Chemi
ESULTS n Event	ters	NOC	0 7		0.1	0 .0.	< 1.0 - 10	< 1.0 - 10	< 1.0 - 10	µg/L	1.0 - 10	EPA 1664	LAB	
ANALYTICAL RESULTS for Fourth Storm Event	Other Parameters	DISSOLVED COPPER Cu _d	< 10	AA 44	÷ ۲	5 } 1	51	37	21	hg/L	10	EPA 200.8	LAB	emand
ANAL) for Fo	ŏ	TOTAL COPPER Cu _t	< 10		, K	3 1	አ	30	23	µg/L	10	EPA 200.8	LAB	BOD - Biological Oxygen Demand
		TOTAL ALUMINUM Al _t	< 0.063	< 0.063	0.16	0.15	<u> </u>	0.13	0.083	mg/L	0.063	EPA 200.7	LAB	BOD - Biolo
		DISSOLVED LEAD Pb _d	< 4.0	< 4.0	< 4.0	< 4.0	0.4.7	0,4 v	< 4.0	µg/L	4.0	EPA 200.8	LAB	nic Compounds
		TOTAL LEAD Pb _t	< 4.0	< 4.0	< 4.0	< 4.0	0.7.). 1	< 4.0	hg/L	4.0	EPA 200.8	LAB	VOC - Volatile Organic Compounds
TIME DISCHARGE STARTED			10:00 PM	10:00 PM	10:00 PM	10:00 PM	10:00 PM	2	10:00 PM	TEST REPORTING UNITS:	CTION LIMIT:	TEST METHOD USED:	(SELF/LAB):	
DATE/TIME OF SAMPLE COLLECTION			03/28/06 10:10 PM	03/28/06 10:40 PM	03/28/06 11:10 PM	03/28/06 11:40 PM	03/29/06 12·10 AM	2/20/06 42:40 444	US/23/US 12:40 AIVI	TEST REPOF	TEST METHOD DETECTION LIMIT:	TEST ME	ANALYZED BY (SELF/LAB):	
DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B01-1 0	C-B03-2 0	C-B05-3 0	C-B05-4 0	C-B06-5	i i			Ľ			

TRPH - Total Recoverable Petroleum Hydrocarbons

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2005 - 2006

FOURTH STORM EVENT

If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05)

· If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank · Make additional copies of this form as necessary.

· When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box.

NAME OF PERSON COLLECTING SAMPLES: Richard Gilb

TITLE: Manager, Environmental Affairs

SIGNATURE: MM MM

DESCRIBE DISCHARGE LOCATION Example: NW Out Fall	DATE/TIME OF SAMPLE COLLECTION	TIME DISCHARGE STARTED				AN	ANALYTICAL RESULTS for FOURTH Storm Event	AL RESUI Storm E	LTS vent	·		
							Other Pa	Other Parameters				
			五	TSS	SC	O&G (HEM)	втех	MBAS	TPH (gas)	ТКРН	TOTAL IRON Fe _t	TOTAL ZINC Zn _t
	03/29/06 1:10 AM	10:00 PM	6.80	10.0	31.2	< 2.00	< 0.50	< 0.100	< 50	< 1.0	0.098	0.40
	03/29/06 1:40 AM	10:00 PM	7.30	12.0	79.0	< 2.00	< 0.50	< 0.100	2 20 >	2.2	> 0.050	0.13
C-B04-9	03/29/06 2:10 AM	10:00 PM	7.10	18.0	250	2.00	< 0.50	0.120	· 20 · 20	< 1.0	0.44	0.042
					MAN (2011)							
	TEST REPO	TEST REPORTING UNITS:	pH units	mg/L	mp/soyum	mg/L	µg/L	mg/L	µg/L	mg/L	mg/L	ma/L
 	TEST METHOD DETECTION LIMIT:	ECTION LIMIT:	0.100	1.00	0.100	1.0	0.50	0.100	20	1.0	0.064	0.024
	TEST ME	TEST METHOD USED:	EPA 150.1	EPA 160.2	EPA 120.1	EPA 1664	EPA 8021B/8015	EPA 425.1	EPA 8021B/ 8015B	EPA 418.1	EPA 200.7	EPA 200.7
TSS - Total Succession by	ANALYZED BY	ANALYZED BY (SELF/LAB):	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	I AB	AB
MBAS - Methylene BI	MBAS - Methylene Blue Active Substances	SC - Specific Conductance	nctance	TPH - Total Pe	O&G - Oil & Grease (H TPH - Total Petroleum Hydrocarbons	O&G - Oil & Grease (HEM - Hexane Extractable Material stroleum Hydrocarbons	Hexane Extrac	table Material	Ĭ,	nzene, Toluer tecoverable P	BTEX - Benzene, Toluene, Ethylbenzene, Xylenes TRPH - Total Recoverable Petroleum Hydrocarhons	ne, Xylenes

Form 1 - page 12 of 12

FORM 1 - SAMPLING ANALYSIS RESULTS **ANNUAL REPORT** 2005-2006

FOURTH STORM EVENT

· If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical · When analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate value of the detection limit (example: <.05)

If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank

· Make additional copies of this form as necessary.

		Т	်	7					***************************************	I		ıΩ	<u> </u>	٦
			GLYCOLS		< 5.0	, ,	, v	2		l/om	5.0	EPA 8015B	-	8
M			AMMONIA as N		0.420	0 340	0.270		· Control to the	ma/l	0.100	EPA 350.1	-	emand
			СОБ		< 0.100	< 0.100	× 0.100	3		ma/L	0.100	EPA 410.4	0 V	COD - Chemical Oxygen Demand
Æ:			BOD		v 2.00	< 2.00	< 2.00		Section Programs	mg/L	2.00	EPA 405.1	4	COD - Chem
SIGNATURE:	SULTS 1 Event	ers	VOC	0,70	V - U.1 ~	< 1.0 - 10	< 1.0 - 10			µg/L	1.0 - 10	EPA 624	AB	
	ANALYTICAL RESULTS for Fourth Storm Event	Other Parameters	DISSOLVED COPPER Cu _d	*0		14	30	 A supplied to the property of the		µg/L	0	EPA 200.8	LAB	Demand
ental Affairs	ANAL for Fc	0	TOTAL COPPER Cu _t	25	3	14	98		in days and succession	µg/L	10	EPA 200.8	LAB	BOD - Biological Oxygen Demand
TITLE: Manager, Environmental Affairs			TOTAL ALUMINUM Al _t	0.10		< 0.063	0.39		(2) 李安德州 (1) 李德·克德州 (1) 李德·克德州 (1)	mg/L	0.063	EPA 200.7	LAB	BOD - Biol
TITLE: Man			DISSOLVED LEAD Pb _d	< 4.0	TO BRIDE SHEET SHEET SHEET	< 4.0	< 4.0			hg/L	4.0	EPA 200.8	LAB	nic Compounds
d Gilb			TOTAL LEAD Pb _t	< 4.0		< 4.0	< 4.0			µg/L	4.0	EPA 200.8	LAB	VOC - Volatile Organic Compounds
MPLES: Richa	TIME DISCHARGE STARTED			10:00 PM		10:00 PM	10:00 PM			TING UNITS:	CTION LIMIT:	TEST METHOD USED:	(SELF/LAB):	
NAME OF PERSON COLLECTING SAMPLES: Richard Gilb	DATE/TIME OF SAMPLE COLLECTION			03/29/06 1:10 AM	75/00/00 4 40 410	U3/29/U6 1:40 AM	03/29/06 2:10 AM			TEST REPORTING UNITS:	TEST METHOD DETECTION LIMIT:	TEST ME	ANALYZED BY (SELF/LAB):	
NAME OF PERS(DESCRIBE DISCHARGE LOCATION Example: NW Out Fall			C-B07-7 (ه مرم ر	\$	C-B04-9 (C				TES			

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

SIDE A

- Quarterly dry weather visual observations are required of each authorized NSWD. Observe each authorized NSWD source, impacted drainage area, and discharge location.
- Authorized NSWDs must meet the conditions provided in Section D (pages 5-6), of the General Permit. Make additional copies of this form as necessary.

	If YES , complete reverse side of this form.	If YES , complete reverse side of this form.	If YES, complete reverse side of this form.	If YES , complete reverse side of this form.
	☐ YES WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER?	☐ YES WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER?	☐ YES WERE ANY AUTHORIZED NSWDS DISCHARGED DURING THIS QUARTER?	☐ YES WERE ANY AUTHORIZED NSWDS DISCHARGED DURING THIS QUARTER?
	Observers Name: Richard Gilb Title: Environmental Affelrs Manager Signature:	Observers Name: Richard Gilb Title: Environmental Affairs Manager Signature: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	Observers Name: Richard Gilb Title: Envirophental Affairs Manager Signature: Manager	Observers Name: Richard Gilb Title: Environmental Affairs Manager Signature: Month of the state of the stat
01110	JULY-SEPT. DATE: 8 / 12 / 05	QUARTER: OCTDEC. DATE:	2UARTER: JANMARCH DATE: 3 / 10 / 06	2UARTER: APRIL-JUNE 3ATE: 5/17/ 06 & 6/1 & 2/ 06

FORM 3-QUARTERLY VISUAL OBSERVATIONS OF UNAUTHORIZED

SIDE A

NON-STORM WATER DISCHARGES (NSWDs)

Section D (pages 5-6) of the General Permit.

Unauthorized NSWDs are discharges (such as wash or rinse waters) that do not meet the conditions provided in

Quarterly visual observations are required to observe current and detect prior unauthorized NSWDs.

Quarterly visual observations are required during dry weather and at all facility drainage areas.

Unauthorized NSWDs that can not be eliminated within 90 days of observation must be reported to the Regional Board in accordance Each unauthorized NSWD source, impacted drainage area, and discharge location must be identified and observed.

Make additional copies of this form as necessary. with Section A.10.e of the General Permit.

TOTAL STATE				
COARIER: JULY-SEPI.	Observers Name: Richard Gilb			If VES to
DATE/TIME OF OBSERVATIONS		Q.		either
10 / CT / O	Title: Environmental Affairs Manager	NOWD'S OBSERVED?	0 2	question,
8/ 12/ U3		WERE THERE INDICATIONS OF		complete
11:00 □ PM	Signature:	PRIOR UNAUTHORIZED NSWDs? VES		reverse side.
QUARTER: OCTDEC.	Observers Name - Richard Cilh			If VEC to
DATE/TIME OF OBSERVATIONS		WERE UNAUTHORIZED	;	either
12/29/ 05	Title: Environmental Affairs Manager	NOWDS OBSERVED?	0	question,
2:00	Signature: \mathcal{MM}	WERE THERE INDICATIONS OF PRIOR LINALITHORIZED NEWDOOD ASS		reverse
QUARTER: JAN-MARCH	Observers Name - Bichard Cilk		2	F VID 15
DATE/TIME OF OBSERVATIONS		WERE UNAUTHORIZED	;	either
3/10/06	Title: Environmental Affairs Manager	MONDS OBSERVED?	O Z	question, complete
Md □ <u>00</u> :6	Signature:	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs? TO VES	2	reverse
QUARTER: APRIL-JUNE	Observars Name Dishard Cili			
DATE/TIME OF OBSERVATIONS		WERE UNAUTHORIZED	i	If YES to either
5/17/06 & 6/1 & 2/06	Title: Environmental Affairs Manager	TES TEST	2	question,
11:00 AM & 10:00 AM		WERE THERE INDICATIONS OF		complete
8 <u>9:00</u> AM	Signature:	PRIOR UNAUTHORIZED NSWDS? YES	ON .	side.

FORM 4 - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES ANNUAL REPORT 2005

Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.

Visual observations must be conducted during the first hour of discharge

at all discharge locations.
Discharges of temporarily stored or contained storm water must be observed at the time of discharge.

Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.

SIDE A

Make additional copies of this form as necessary.

Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: October 17, 2005	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Environmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 12:20 PM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Were Pollutants Observed: NO	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(if yes, complete reverse side)	Observation Time	1:30 PM	: A.M. / PM	12:20 PM
	Were Pollutants Observed	■ YES □ NO	U YES UNO	□ YES ■ NO

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: December 31, 2005	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard, Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Ephironmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	: A.M. / PM	. A.M. / PM	: A.M. / PM
Observation Time: 1:50 PM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(if yes, complete reverse side)	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO

Form 4 - page 2 of 12

2005 2006 ANNUAL REPORT

FORM 4-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

SIDE B

DESCRIBE ANY REVISED OR NEW BMPs AND THEIR DATE OF IMPLEMENTATION	No revised or new BMPs required, merely the proper implementation of established procedures					
IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS	Concentrated liquid deodorant used in aircraft toilet systems.					
DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing	floating objects or an oil sheen, has odors, etc. Blue liquid visible in storm water runoff stream.					
DRAINAGE AREA DESCRIPTION	Cargo area, west of the West Wing.					
DATE/TIME OF OBSERVATION (From Reverse Side)	10 / 17 / 05 1:30 \(\text{\$\exitt{\$\exitt{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tint{\$\text{\$\exitt{\$	NA / / : AM PM	NA / /	NA / / SM : AM : PM	NA / / .: AM	NA / / : : AM : : PM

2005 2006 ANNUAL REPORT FORM 4-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

SIDE A

ADDITIONAL PAGES

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: January 14, 2006	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Environmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature: Signature: Man in the Signature	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 4:35 PM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(if yes, complete reverse side)	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: January 27, 2006	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	U YES U NO
Title: Manager, Ervironmental Affatrs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 5:50 AM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	O YES O NO
	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, complete reverse side)	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO

SIDE A

2005 2006 ANNUAL REPORT FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

ADDITIONAL PAGES

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: February 18, 2006	Observation Time	: A.M. / PM	Md/.MA :	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Environmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 6:50 AM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Were Pollutants Observed: N/A	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, compiete feverse side)	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: February 27, 2006	Observation Time	12:00 AM	12:30 AM	1:00 AM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES ■ NO	□ YES ■ NO	□ YES ■ NO
Title: Manager, Erkironmedtal Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	1:30 AM	2:00 AM	2:30 AM
Observation Time: 12:00 AM	Were Pollutants Observed	□ YES ■ NO	□ YES ■ NO	□ YES ■ NO
Were Pollutants Observed: NO	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, conipiete revelse side)	Observation Time	3:00 AM	3:30 AM	4:00 AM
	Were Pollutants Observed	□ YES ■ NO	□ YES ■ NO	□ YES ■ NO

2005 2006 ANNUAL REPORT FORM 4 – MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

ADDITIONAL PAGES

			-	
	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: March 3, 2006	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Environmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature: Time Discharge Regar: None incutting	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 3:05 PM	Were Pollutants Observed	□ YES □ NO	U YES U NO	□ YES □ NO
	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, complete reverse side)	Observation Time	: A.M. / PM	: A.M. / PM	. A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	YES

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: March 10, 2006	Observation Time	: A.M. / PM	: A.M. / PM	1:00 AM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES ■ NO
Title: Manager, Environmental Affairs/	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature: Time Discharre Benan: 12:00 AM	Observation Time	: A.M. / PM	1:30 AM	2:00 AM
Observation Time: 1:00 AM	Were Pollutants Observed	U YES ONO	. □ YES ■ NO	□ YES ■ NO
Were Pollutants Observed: No	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, complete reverse side)	Observation Time	2:30 AM	. A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES ■ NO	□ YES □ NO	□ YES □ NO

FORM 4 - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

2005 2006 ANNUAL REPORT

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: March 17, 2006	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Environmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature: Signature: More in the interior	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 6:50 PM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Were Pollutants Observed: N/A	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, complete reverse side)	Observation Time	: A.M. / PM	A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	· □ YES □ NO

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: March 28, 2006	Observation Time	10:10 PM	10:40 PM	11:10 PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES ■ NO	□ YES ■ NO	□ YES ■ NO
Title: Manager, Ephironnental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	11:40 PM	12:10 AM	12:40 AM
Observation Time: 10:10 PM	Were Pollutants Observed	□ YES ■ NO	□ YES ■ NO	□ YES ■ NO
	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(If yes, complete reverse side)	Observation Time	1:10 AM	1:40 AM	2:10 AM
	Were Pollutants Observed	□ YES ■ NO	□ YES ■ NO	□ YES ■ NO

Form 4 – page 11 of 12

2005 2006 ANNUAL REPORT

FORM 4 - MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: April 4, 2006	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Ervironmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature: Time Discharge Bergn: None incufficient column	Observation Time	: A.M. / PM	.: A.M. / PM	: A.M. / PM
Observation Time: 5:05 PM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Were Pollutants Observed: N/A	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
(ii yes, complete revelse slue)	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
	Drainage Location Description	C-B01-1	C-B03-2	C-B05-3
Observation Date: April 14, 2006	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observers Name: Richard Gilb	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Title: Manager, Enfironmental Affairs	Drainage Location Description	C-B05-4	C-C06-5	C-B07-6
Signature:	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
Observation Time: 12:50 PM	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO
Nere Pollutants Observed: N/A	Drainage Location Description	C-B07-7	C-B08-8	C-B04-9
	Observation Time	: A.M. / PM	: A.M. / PM	: A.M. / PM
	Were Pollutants Observed	□ YES □ NO	□ YES □ NO	□ YES □ NO

2005 2006 ANNUAL, KEPORT

FORM 5 - ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: May/June 2006 INSPECTOR NAME: Richard Gilb/ Marisa Fontanoz TITLE: Manager/ Assistant Environmental Specialist SIGNATURE:

POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) ABX Air, Incorporated	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ■ YES □ NO ARE ADDITIONAL/REVISED BMPS NECESSARY? □ YES	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation Dry absorbent material left on the ground. Lavatory deodorant was not stored properly. Hazardous materials and wastes were not stored properly.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation ABX Air, Incorporated was notified of the deficiency by letter. Problems were abated on June 28, 2006.
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) American Eagle	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ■ YES □ NO ARE ADDITIONAL/REVISED BMPS NECESSARY? □ YES	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation Leaking ground service equipment. Trash and debris in southeast comer of the operations area.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation American Eagle was notified of the deficiency by letter. Problems were abated on June 28, 2006.
SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) American Airlines	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ■ YES □ NO ARE ADDITIONAL/REVISED BMPS NECESSARY? □ YES	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation Oily stains apparently caused by leaking equipment in the area of Gate 29.	Describe additional/revised BMPs or corrective actions and their date(s) of implementation American Airlines was notified of the deficiency by letter. Problems were abated on June 23, 2006.

2005 2006 ANNUAL KEPORT

FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: May/June 2006 INSPECTOR NAME: Richard Gilb/ Marisa Fontanoz TITLE: Manager/ Assistant Environmental Specialist SIGNATURE:

	Airport Service International Group was notified of the deficiency by letter. Problems were abated on June 28, 2006.	MPs or BMP Corrective actions and their date(s) of implementation	Continenta	Problems were abated on June 15, 2006.	Describe a	inplementation John Street, Code Sign Street,	Problems were abated on June 13, 2006
If yes, to either question, complete the Used dry absorbent materials not disposed of property.	columns of this form	<u></u>	complete the Used dry absorbent left on ground in West next two RON in close proximity to Continental ground columns of this equipment.		Describe deficiencies in BMPs or BMP question,	complete the next two According to City of San Diego Fire Code columns of this section 1210.3, storage of any flammable form materials underneath a stairway is prohibited	Litter and debris in the carro storane area in
z	ARE ADDITIONAL/REVISED BMPs NECESSARY? □ YES ■ NO	Z	ARE ADDITIONAL/REVISED OF BMPs NECESSARY?	☐ YES	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ■ YES	ARE ADDITIONAL/REVISED β α α α α α α α α α α α α α α α α α α	
SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) Airport Service International Group		POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	Continental Airlines, Inc.		POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	Delta Air Lines, Incorporated	

ANNUAL KEPORT

POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS FORM 5 – ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION

SIGNATURE: EVALUATION DATE: May/June 2006 INSPECTOR NAME: Richard Gilb/ Marisa Fontanoz TITLE: Manager/ Assistant Environmental Specialist

JimsAir Aviation Services, Incorporated was HMS Host Corporation was notified of the deficiency by letter. Describe additional/revised BMPs or corrective actions and their date(s) of Problems were abated on June 12, 2006. Describe additional/revised BMPs or corrective actions and their date(s) of Describe additional/revised BMPs or corrective actions and their date(s) of ExecAir Maintenance, Incorporated was notified of the deficiency by letter. Describe additional/revised BMPs or corrective actions and their date(s) of FEDEX was notified of the deficiency by Problems were abated on June 28, 2006. Problems were abated on June 14, 2006. Problems were abated on June 29, 2006. notified of the deficiency by letter. implementation implementation implementation implementation letter. 2 2 Evidence of staining and spillage around the grease trap located near Gates 2 and 11. Oil spills from ground support equipment (GSE). Used dry absorbent materials not disposed of properly. Improper handling/disposal of waste next the grease trap in the area of the Terminal Describe deficiencies in BMPs or BMP Improper handling/disposal of waste at the dumpster area of Terminal 2 West. Evidence non-stormwater discharge from Hazardous materials and wastes are not Untreated oil stains in operations area. implementation implementation implementation implementation Oil waste improperly stored. washing activities. stored properly. Connector. columns of this form If yes, to either columns of this form columns of this form columns of this form If yes, to either If yes, to either If yes, to either complete the complete the complete the complete the question, next two next two question, question, next two next two HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ■ YES ARE ADDITIONAL/REVISED BMPs NECESSARY? □ YES □ YES ■ YES ARE ADDITIONAL/REVISED BMPs NECESSARY? □ YES 0N | **2** ARE ADDITIONAL/REVISED BMPs NECESSARY? ■ YES □ YES ■ YES ARE ADDITIONAL/REVISED BMPs NECESSARY? 8 = **8** Q ■ 2 ExecAir Maintenance, Incorporated SOURCE/INDUSTRIAL ACTIVITY AREA SOURCE/INDUSTRIAL ACTIVITY AREA SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SOURCE/INDUSTRIAL ACTIVITY AREA JimsAir Aviation Services, (as identified in your SWPPP) (as identified in your SWPPP) (as identified in your SWPPP) **HMS Host Corporation** POTENTIAL POLLUTANT POTENTIAL POLLUTANT POTENTIAL POLLUTANT POTENTIAL POLLUTANT Incorporated **FEDEX**

ANNUAL KEPORT

FORM 5 - ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: <u>May/June 2006</u> INSPECTOR NAME: <u>Richard Gilb/ Marisa Fontanoz</u> TITLE: <u>Manager/ Assistant Environmental Specialist</u> SIGNATURE;

United Airlines, Incorporated was notified of the deficiency by letter. Swiss Port was notified of the deficiency by United Parcel Service Company was notified Describe additional/revised BMPs or corrective actions and their date(s) of Problems were abated on June 28, 2006. Describe additional/revised BMPs or corrective actions and their date(s) of Problems were abated on June 14, 2006. Describe additional/revised BMPs or corrective actions and their date(s) of Problems were abated on June 21, 2006. Describe additional/revised BMPs or corrective actions and their date(s) of implementation Problems were abated on June 12, 2006. Kitty Hawk Cargo was notified of the of the deficiency by letter. deficiency by letter. implementation implementation implementation .⊑ Used dry absorbent materials not disposed of properly. not Oily stains in cargo area not treated with spill kit. Used dry absorbent materials in cargo area Describe deficiencies in BMPs or BMP ground are Hazardous materials stored improperly. Leaking equipment in operations area. Hazardous materials and wastes 5 Oily stains not treated with spill kit. Oily stains not treated with spill kit. Fuel spills not treated with spill kit. Vehicle batteries stored outdoors. implementation implementation implementation implementation eff dry absorbent not disposed of properly. maintenance area. stored properly. Used columns of this form If yes, to either columns of this form columns of this columns of this form If yes, to either If yes, to either If yes, to either complete the complete the complete the complete the question, next two question, question, next two next two question, next two HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? ■ YES HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED? ARE ADDITIONAL/REVISED BMPs NECESSARY? ■ YES 0 0 0 □ YES ■ YES □ YES ARE ADDITIONAL/REVISED BMPs NECESSARY? ■ YES S E ARE ADDITIONAL/REVISED BMPs NECESSARY? □ YES ARE ADDITIONAL/REVISED BMPs NECESSARY? **№ № 8** 2 = 2 SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) SOURCE/INDUSTRIAL ACTIVITY AREA SOURCE/INDUSTRIAL ACTIVITY AREA SOURCE/INDUSTRIAL ACTIVITY AREA United Parcel Service Company United Airlines, Incorporated (as identified in your SWPPP) (as identified in your SWPPP) (as identified in your SWPPP) POTENTIAL POLLUTANT POTENTIAL POLLUTANT POTENTIAL POLLUTANT POTENTIAL POLLUTANT Kitty Hawk Cargo Swiss Port

ANALYTICAL DATA

Ocean Blue Env. Services

2775 Kurtz St. San Diego CA, 92110 Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ST1-101705	0510325-01	Liquid	10/17/05 12:20	10/19/05 12:00
ST2-101705	0510325-02	Liquid	10/17/05 13:30	10/19/05 12:00

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:2	20 Rece	ived: 10/19/	/05 12:00					
Ammonia as N	0.440	0.100	mg/L	1	B5J1924	10/18/05	10/18/05	EPA 350.1	
Biochemical Oxygen Demand	95.0	2.00	"	"	"	"	10/23/05	EPA 405.1	
Chemical Oxygen Demand	230	0.100	"	"	"	"	10/18/05	EPA 410.4	
Specific Conductance (EC)	157	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEI	M) 2.70	2.00	mg/L	"	"	"	"	EPA 1664	
pH	5.83	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	79.0	1.00	mg/L	"	"	"	"	EPA 160.2	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:3	30 Rece	ived: 10/19	/05 12:00					
Ammonia as N	0.610	0.100	mg/L	1	B5J1924	10/18/05	10/18/05	EPA 350.1	
Biochemical Oxygen Demand	35.0	2.00	"	"	"	"	10/23/05	EPA 405.1	
Chemical Oxygen Demand	141	0.100	"	"	"	"	10/18/05	EPA 410.4	
Specific Conductance (EC)	87.0	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEI	M) 2.20	2.00	mg/L	"	"	"	"	EPA 1664	
pH	6.22	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	27.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Ocean Blue Env. Services

Project: Storm Water

2775 Kurtz St.

Project Number: SA 3275

San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Metals by EPA 6000/7000 Series Methods Sierra Analytical Labs, Inc.

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ed: 10/1	9/05 12:00					
Aluminum	2.2	0.50	mg/L	1	B5J2411	10/24/05	10/24/05	EPA 6010B	
Copper	230	100	μg/L	2	B5J2409	10/24/05	10/25/05	EPA 6020	
Iron	2.9	0.52	mg/L	1	B5J2411	10/24/05	10/24/05	EPA 6010B	
Lead	ND	40	$\mu g/L$	2	B5J2409	10/24/05	10/25/05	EPA 6020	
Zinc	790	100	"	"	"	"	"	"	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:30	Receiv	ed: 10/1	9/05 12:00					
Aluminum	0.60	0.50	mg/L	1	B5J2411	10/24/05	10/24/05	EPA 6010B	
Copper	210	100	μg/L	2	B5J2409	10/24/05	10/25/05	EPA 6020	
Iron	0.71	0.52	mg/L	1	B5J2411	10/24/05	10/24/05	EPA 6010B	
Lead	ND	40	μg/L	2	B5J2409	10/24/05	10/25/05	EPA 6020	
Zinc	880	100	"	"	"	"	"	"	

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Metals (Dissolved) by EPA 6000/7000 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ved: 10/1	9/05 12:00					
Copper	180	100	μg/L	2	B5J2410	10/24/05	10/25/05	EPA 6020	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:30	Receiv	ved: 10/1	9/05 12:00					
Copper	160	100	μg/L	2	B5J2410	10/24/05	10/25/05	EPA 6020	

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

EPA 200.8

Metals (Dissolved) by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ed: 10/1	9/05 12:00					
Lead	ND	40	μg/L	2	B5J2410	10/24/05	10/25/05	EPA 200.8	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:30	Receiv	ed: 10/1	9/05 12:00					

 $\mu g/L$

B5J2410 10/24/05

10/25/05

ND

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR Sierra Analytical Labs, Inc.

	Re	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ed: 10/1	9/05 12:00					
TRPH	6.6	1.0	mg/L	1	B5J2438	10/24/05	10/24/05	EPA 418.1	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:30	Receiv	ed: 10/1	9/05 12:00					
TRPH	4.7	1.0	mg/L	1	B5J2438	10/24/05	10/24/05	EPA 418.1	

Ocean Blue Env. Services

2775 Kurtz St. San Diego CA, 92110 Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ved: 10/1	9/05 12:00					
Acrolein	ND	10	μg/L	1	B5J1929	10/19/05	10/19/05	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	Q	7.4 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		100 %		110	"	,,	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3275 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ved: 10/1	9/05 12:00			-		
Surrogate: 4-Bromofluorobenzene		108 %		-115	B5J1929	10/19/05	10/19/05	EPA 624	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:30		ved: 10/1	9/05 12:00					
Acrolein	ND	10	μg/L	1	B5J1929	10/19/05	10/19/05	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13	:30 Receiv	ed: 10/19	/05 12:00					
Methyl tert-butyl ether	ND	1.0	μg/L	1	B5J1929	10/19/05	10/19/05	EPA 624	
Surrogate: Dibromofluoromethane		99.0 %	86-1	18	"	"	"	"	
Surrogate: Toluene-d8		100 %	88-1	10	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	86-1	15	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3275 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 10/26/05 13:48

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

	R	eporting							_
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ST1-101705 (0510325-01) Liquid	Sampled: 10/17/05 12:20	Receiv	ed: 10/1	9/05 12:00					
Benzene	ND	0.50	$\mu g/L$	1	B5J2108	10/21/05	10/21/05	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene	8	81.5 %	70-	125	"	"	"	"	
ST2-101705 (0510325-02) Liquid	Sampled: 10/17/05 13:30	Receiv	ed: 10/1	9/05 12:00					
Benzene	ND	0.50	μg/L	1	B5J2108	10/21/05	10/21/05	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene	3	81.0 %	70-	125	"	"	"	"	

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Metals by EPA 6000/7000 Series Methods - Quality Control Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5J2409 - EPA 3010A										
Blank (B5J2409-BLK1)				Prepared:	: 10/24/05	Analyzed	1: 10/25/05			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
Zinc	ND	10	"							
LCS (B5J2409-BS1)				Prepared:	10/24/05	Analyzed	1: 10/25/05			
Copper	91.6	10	μg/L	100		91.6	80-120			
Lead	107	4.0	"	100		107	80-120			
Zinc	89.0	10	"	100		89.0	80-120			
Matrix Spike (B5J2409-MS1)	Sou	ırce: 051032	5-01	Prepared:	10/24/05	Analyzed	1: 10/25/05			
Copper	1080	100	μg/L	1000	230	85.0	75-125			
Lead	1040	40	"	1000	ND	104	75-125			
Zinc	1600	100	"	1000	790	81.0	75-125			
Matrix Spike Dup (B5J2409-MSD1)	Sou	ırce: 051032	5-01	Prepared:	10/24/05	Analyzed	1: 10/25/05			
Copper	1050	100	μg/L	1000	230	82.0	75-125	2.82	20	
Lead	993	40	"	1000	ND	99.3	75-125	4.62	20	
Zinc	1580	100	"	1000	790	79.0	75-125	1.26	20	
Batch B5J2411 - EPA 3010A										
Blank (B5J2411-BLK1)				Prepared	& Analyz	zed: 10/24/	05			
Aluminum	ND	0.050	mg/L							
Iron	ND	0.052	"							
LCS (B5J2411-BS1)				Prepared	& Analyz	zed: 10/24/	05			
Aluminum	0.198	0.050	mg/L	0.200		99.0	80-120			
Iron	0.213	0.052	"	0.200		106	80-120			

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5J2411 - EPA 3010A

Matrix Spike (B5J2411-MS1)	Sour	ce: 051038	9-01	Prepared &	& Analyze	ed: 10/24/	05			
Aluminum	0.273	0.050	mg/L	0.200	0.12	76.5	75-125			
Iron	0.419	0.052	"	0.200	0.25	84.5	75-125			
Matrix Spike Dup (B5J2411-MSD1)	Sour	ce: 051038	9-01	Prepared &	& Analyze	ed: 10/24/	05			
Aluminum	0.325	0.050	mg/L	0.200	0.12	102	75-125	17.4	20	
Iron	0.470	0.052	"	0.200	0.25	110	75-125	11.5	20	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Metals (Dissolved) by EPA 6000/7000 Series Methods - Quality Control Sierra Analytical Labs, Inc.

	•	Reporting	•	Spike	Source	•	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5J2410 - EPA 3010A										
Blank (B5J2410-BLK1)				Prepared:	10/24/05	Analyzed	: 10/25/05			
Copper	ND	10	$\mu \text{g}/L$							
LCS (B5J2410-BS1)				Prepared:	10/24/05	Analyzed	: 10/25/05			
Copper	88.6	10	$\mu \text{g}/L$	100		88.6	80-120			
Matrix Spike (B5J2410-MS1)	Sou	rce: 051032	5-01	Prepared:	10/24/05	Analyzed	: 10/25/05			
Copper	1050	100	μg/L	1000	180	87.0	75-125			
Matrix Spike Dup (B5J2410-MSD1)	Sou	rce: 051032	5-01	Prepared:	10/24/05	Analyzed	: 10/25/05			
Copper	1070	100	μg/L	1000	180	89.0	75-125	1.89	20	

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5J2410 - EPA 3010A		·								
Blank (B5J2410-BLK1)				Prepared:	10/24/05	Analyzed:	10/25/05			
Lead	ND	4.0	μg/L	-						
LCS (B5J2410-BS1)				Prepared:	10/24/05	Analyzed:	10/25/05			
Lead	107	4.0	μg/L	100		107	85-115			
Matrix Spike (B5J2410-MS1)	Sou	rce: 0510325	5-01	Prepared:	10/24/05	Analyzed:	10/25/05			
Lead	1080	40	μg/L	1000	ND	108	70-130			
Matrix Spike Dup (B5J2410-MSD1)	Sou	rce: 0510325	5-01	Prepared:	10/24/05	Analyzed:	10/25/05			
Lead	1060	40	μg/L	1000	ND	106	70-130	1.87	20	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Spike

Source

Reported: 10/26/05 13:48

RPD

%REC

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR - Quality Control

Sierra Analytical Labs, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5J2438 - EPA 3510C Sep	Funnel									
Blank (B5J2438-BLK1)				Prepared:	10/24/05	Analyzed	:			
TRPH	ND	1.0	mg/L							
LCS (B5J2438-BS1)				Prepared:	10/24/05	Analyzed	:			
TRPH	11.0	1.0	mg/L	10.0		110	80-120			
LCS (B5J2438-BS2)				Prepared:	10/24/05	Analyzed	:			
TRPH	10.9	1.0	mg/L	10.0		109	80-120			
LCS Dup (B5J2438-BSD1)				Prepared:	10/24/05	Analyzed	:			
TRPH	11.7	1.0	mg/L	10.0		117	80-120	6.17	30	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch B5J1929 - EPA 5030B P & T

Blank (B5J1929-BLK1)				Prepared & Analyzed: 10/19/05
Acrolein	ND	10	μg/L	
Acrylonitrile	ND	10	"	
Benzene	ND	1.0	"	
Bromobenzene	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
Carbon tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
2-Chloroethylvinyl ether	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
trans-1,3-Dichloropropene	ND	1.0	"	
Ethylbenzene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
Toluene	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
m,p-Xylene	ND	1.0	"	

Trichloroethene

Project: Storm Water
Project Number: SA 3275
Project Manager: Don Ostrand

Spike

Source

Reported: 10/26/05 13:48

RPD

%REC

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5J1929 - EPA 5030B P & T										
Blank (B5J1929-BLK1)				Prepared	& Analyz	ed: 10/19/	05			
o-Xylene	ND	1.0	μg/L							
Methyl tert-butyl ether	ND	1.0	"							
Surrogate: Dibromofluoromethane	50.4		"	50.0		101	86-118			
Surrogate: Toluene-d8	50.3		"	50.0		101	88-110			
Surrogate: 4-Bromofluorobenzene	52.7		"	50.0		105	86-115			
LCS (B5J1929-BS1)				Prepared	& Analyz	ed: 10/19/	05			
Benzene	53.4	1.0	μg/L	50.0		107	80-120			
Chlorobenzene	53.9	1.0	"	50.0		108	80-120			
1,1-Dichloroethene	46.0	1.0	"	50.0		92.0	80-120			
Toluene	52.6	1.0	"	50.0		105	80-120			
Trichloroethene	53.6	1.0	"	50.0		107	80-120			
LCS (B5J1929-BS2)				Prepared	& Analyz	ed: 10/19/	05			
Benzene	51.6	1.0	μg/L	50.0		103	80-120			
Chlorobenzene	52.0	1.0	"	50.0		104	80-120			
1,1-Dichloroethene	46.7	1.0	"	50.0		93.4	80-120			
Toluene	49.8	1.0	"	50.0		99.6	80-120			
Trichloroethene	52.3	1.0	"	50.0		105	80-120			
LCS Dup (B5J1929-BSD1)				Prepared	& Analyz	ed: 10/19/	05			
Benzene	50.9	1.0	μg/L	50.0		102	80-120	4.79	30	
Chlorobenzene	51.1	1.0	"	50.0		102	80-120	5.33	30	
1,1-Dichloroethene	44.2	1.0	"	50.0		88.4	80-120	3.99	30	
Toluene	49.3	1.0	"	50.0		98.6	80-120	6.48	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

50.3

1.0

50.0

101

80-120

6.35

30

Gasoline Range Hydrocarbons (C4-C12)

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3275

 2775 Kurtz St.
 Project Number:
 SA 3275
 Reported:

 San Diego CA, 92110
 Project Manager:
 Don Ostrand
 10/26/05 13:48

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series - Quality Control Sierra Analytical Labs, Inc.

Reporting

Spike

600

ND

94.2

50-150

2.10

30

Source

%REC

RPD

		reporting		Spine	Bouree		, or the		111 2	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5J2108 - EPA 5030B P & T										
Blank (B5J2108-BLK1)				Prepared	& Analyz	ed: 10/21/	05			
Benzene	ND	0.50	μg/L							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	"							
Methyl tert-butyl ether	ND	5.0	"							
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"							
Surrogate: a,a,a-Trifluorotoluene	16.3		"	20.0		81.5	70-125			
LCS (B5J2108-BS1)				Prepared	& Analyz	ed: 10/21/	05			
Benzene	34.0	0.50	μg/L	40.0		85.0	80-120			
Toluene	35.6	0.50	"	40.0		89.0	80-120			
Ethylbenzene	35.4	0.50	"	40.0		88.5	80-120			
Gasoline Range Hydrocarbons (C4-C12)	649	50	"	600		108	80-120			
Matrix Spike (B5J2108-MS1)	Sou	rce: 051038	5-05	Prepared	& Analyz	ed: 10/21/	05			
Benzene	28.4	0.50	μg/L	40.0	ND	71.0	39-150			
Toluene	30.3	0.50	"	40.0	ND	75.8	46-148			
Ethylbenzene	30.6	0.50	"	40.0	ND	76.5	32-160			
Gasoline Range Hydrocarbons (C4-C12)	577	50	"	600	ND	96.2	50-150			
Matrix Spike Dup (B5J2108-MSD1)	Sou	rce: 051038	5-05	Prepared	& Analyz	ed: 10/21/	05			
Benzene	33.6	0.50	μg/L	40.0	ND	84.0	39-150	16.8	30	
Toluene	35.6	0.50	"	40.0	ND	89.0	46-148	16.1	30	
Ethylbenzene	36.1	0.50	"	40.0	ND	90.2	32-160	16.5	30	
G 1: B 11 (G1 G16)				600	3.775	040	50 150	2.10	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

565

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 10/26/05 13:48

Notes and Definitions

H-01 Sample received without sufficient time to complete analysis within recommended holding time.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

SIERRAANALYTICAL
TEL: 949•348•9389
FAX: 949•348•9115
26052 Merit Circle• Suite 105•Laguna Hills, CA•92653

Date: 10/17/05 Page 1 of L

Lab Project No.:

0516325

727	Client Project ID: SA3275 STORM WATER Turn Around Innmediate 124 Hour	Client Project ID: SA3275 STORM WATER Turn Around Immediate 24 Hour	ect ID: \$193275	43275 TER2 ediate 124 Hour	24 Hour				CEONS	Analysis Requested	DACTIONCESS:	Z Z	71		White
pen	ted 48 Hour 4 Day	ted 48 Hour 4 Day	ted 48 Hour 4 Day		72 H 2 5 Da 2 Mob	four y ile	X		945nS - - 245bB		FIC CONI	トエスの	-	COED	
Date Time Matrix Preservative Container	Matrix Preservative Container	Preservative Container Tune	Container		2 5	No. of	BTE	मद्ग प्रा	1717 2	मत्			ATOT ATOT		
12.10 WATER 1CE G/P	WATER ICE CS/P	Ice G/P	G/P	7	-		X	メメ	×	×	×	X	- X - X	. Y	1 1
→	→	_		= -→	_		メ	メメ	メノ	X	K K	メ	メメ	X	Х
Sampler Signature. Dana Al Ostrangel Shipped Via:	Shipped Via:									Total N	Jumber	of Con	Total Number of Containers Submitted to	Submitt	ted to
Printed Name: DON MALD 05 TRAIND (Carrier/Waybill No.)	(Carrier/Waybill No.)	(o N lic								Laboratory	tory				
10.18.08 Received Lite	Receive Att	01 27.7. Po	10 Da) io	je. Da	10/10/05 Date:		he deliver onstitutes	The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under	es and the	signatur form the	e on this canalysis s	hain of cu pecified al	stody for sove und	E #
Company Sievra	Company Sievra		12 ii	12 II	,2 <u>E</u>	U. CO		SIEKKA nples dete	SIEKKA 8 I FIRMS and CONDITIONS, LINES OTHERWISE agreed upon III * - Samples determined to be hazardous by SIERRA will be returned to CLIENT.	rms and Conditions, unless onerwise a writing between SIERRA and CLIENT, ted to be hazardous by SIERRA will be	ons, unic SIERR/ ous by SI	ss otnerw and CLI ERRA w	ise agreed ENT. Il be retur	upon m	HENT.
Date Received By: Ds			D	D,	ă	Date:				Total 1	Vumber	of Con	Total Number of Containers Recieved by	Recieve	d by
Time: Company: Tri		TI	Π	Τī	Ti.	Тте:				Laboratory	tory				
Date Received By: Date:			Da	Da	Da	ie:	FOR	LABO	FOR LABORATORY USE ONLY - Sample Receipt Conditions:	SA OSE	ONE	(- Sam	ple Rec	eipt C	mdittio
Time: Company: Time:		Th	Tin			je.	<u>}(</u> [Intact			•	N.	Chilled - Temp. (°C)	Temp. (Ι : [
							J (Sample	Seals			J (Preservatives - Verified By.	IIVES - V	entiea
							丛	Propert Approp	Property Labelled Appropriate Sample Container	d iple Cont	ainer	人	Other	ocation	
						DIS	DISTRIBUTION: White - To Accompany Samples, Yellow - Laboratory Copy, Pink - Field Personnel Copy	TION: V	Vhite - T	о Ассо	mpany	Sample	s, Yello	w - Lat	orator

CHAIN OF CUSTODY RECORD

SIERRA ANALYTICALTEL: 949•348•9389
FAX: 949•348•9115
26052 Merit Circle• Suite 105•Laguna Hills, CA•92653

7	10
^	rage
_)
10,17	
ć	Date:

Lab Project No.:

7

	Geotracker EDD Info:	Client LOGCODE	Site Global ID	Field Point Names/ Comments							Sample Disposal:	Return to Client	☐ Lab Disposal*	Archive mos.		Other	:su		A Company of the Comp		Ocean Diet Diet Descend Court
Analysis Requested	MDNA	ऽ स्राप्त	(Bot 100 100 100 100 100 100 100 100 100 10	× × × × ×	X X X X X					Total Number of Containers Submitted to	Laboratory	The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under	SIERRA'S Terms and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. Samples determined to be hazardous by SIERRA will be returned to CLIENT.	Total Number of Containers Recieved by	Laboratory	FOR LABORATORY USE ONLY - Sample Receipt Conditions:		J (Property Labelled Other Other Survase Location	
		ত্য তেও ১৮৮৪	19705	2210	メメ	X X						T		*			FOR LAB		dwee] [Proper	
275		24 Hour 72 Hour	S Day Mobile	No. of Containers	_	11							10/16/05	(3) OO	Date:	Time:	Date:	Тіте:			51.0
543275	- 1	Immediate [-	Container	G/5	GIP															
Client Project ID:		Turn Around Time Requested	3 %	Matrix Preservative	WATER ICE						-	ybill No.)	44	SierriA	y:		y:				
P				Time Mai	3	7					Shipped Via:	(Carrier/Waybill No		Company:	Received By:	Company:	Received By	Company:			
ऽ८२५	2 51			Date Ti							B	20	10.18.05	1200 Time:	Date	Time:	Date	Time:			
LUE / SDCRAM	ተፈሥንነ			Sierra I	Ö	20					atrone	OSTRAND	States of	O Company of the Comp		Volume a proposopra sum propo directal marte sona proposoprama da policida de Velorio					
Client OCEAN BLUE /	Client Address: 2775	Client Tel. No.:	Client Fax. No.: Client Proj. Mgr.:	Client Sample ID.	S01101-17S	Sario1-278			TO DATA AND AND THE PROPERTY OF THE PROPERTY O		Sampler Signature: Down	5	2 Selinonished By Omed	Company: OCEIAN BLUNE	[3] Relinquished By:	Сопрану:	4 Relinquished By:	Company:	Special Instructions:		X 511000

DISTRIBUTION: White - To Accompany Samples. Yellow - Laboratory Conv. Pink -

Rev: 011302

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B01-1	0602559-01	Liquid	02/27/06 00:00	02/28/06 12:35
C-B03-2	0602559-02	Liquid	02/27/06 00:00	02/28/06 12:35
C-B05-3	0602559-03	Liquid	02/27/06 00:00	02/28/06 12:35
C-B05-4	0602559-04	Liquid	02/27/06 00:00	02/28/06 12:35
C-B06-5	0602559-05	Liquid	02/27/06 00:00	02/28/06 12:35
C-B07-6	0602559-06	Liquid	02/27/06 00:00	02/28/06 12:35
C-B07-7	0602559-07	Liquid	02/27/06 00:00	02/28/06 12:35
C-B08-8	0602559-08	Liquid	02/27/06 00:00	02/28/06 12:35
C-B04-9	0602559-09	Liquid	02/27/06 00:00	02/28/06 12:35
SNPTDY-3	0602559-10	Liquid	02/27/06 00:00	02/28/06 12:35

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid Sar	mpled: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	2.25	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	6.10	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	17.0	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	52.7	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM)	ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	EPA 425.1	
рН	7.17	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	4.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B03-2 (0602559-02) Liquid San	mpled: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	2.00	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	11.2	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	48.0	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	42.5	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM)	ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	EPA 425.1	
рН	6.12	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	8.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B05-3 (0602559-03) Liquid Sar	mpled: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	7.00	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	58.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	143	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	135	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE)	M) 2.20	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	0.140	0.100	"	"	"	"	"	EPA 425.1	
рН	6.19	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	43.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4 (0602559-04) Liquid Sampled	: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	4.50	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	64.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	151	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	207	0.100	µmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM)	2.40	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	0.130	0.100	"	"	"	"	"	EPA 425.1	
рН	6.32	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	32.0	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B06-5 (0602559-05) Liquid Sampled	: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	3.75	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	38.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	81.0	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	106	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM)	2.00	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	0.110	0.100	"	"	"	"	"	EPA 425.1	
pН	5.70	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	24.0	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B07-6 (0602559-06) Liquid Sampled	: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	1.50	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	28.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	70.0	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	110	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM)	ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	0.120	0.100	"	"	"	"	"	EPA 425.1	
рН	5.96	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	18.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	3.25	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	72.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	142	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	186	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (H	IEM) 5.60	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	ces 0.110	0.100	"	"	"	"	"	EPA 425.1	
pH	6.33	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	56.0	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	Received	1: 02/28/06	12:35					
Ammonia as N	1.00	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	20.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	49.0	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	203	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (H	IEM) 2.20	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	es ND	0.100	"	"	"	"	"	EPA 425.1	
pH	7.21	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	14.0	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received	: 02/28/06	12:35					
Ammonia as N	0.750	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	116	2.00	**	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	247	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	148	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (H	IEM) 4.30	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	ces 0.150	0.100	"	"	"	"	"	EPA 425.1	
рН	6.89	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	217	1.00	mg/L	"	"	"	"	EPA 160.2	

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:00	Recei	ved: 02/28/	06 12:35					
Ammonia as N	0.500	0.100	mg/L	1	B6C0102	02/28/06	02/28/06	EPA 350.1	
Biochemical Oxygen Demand	23.0	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	48.0	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	25.0	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM)	ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	EPA 425.1	
рН	6.83	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	24.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Ocean Blue Env. Services

2775 Kurtz St.

Project Number: SA 3369

San Diego CA, 92110

Project Manager: Don Ostrand

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Aluminum	ND	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	11	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	0.064	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	4.8	4.0	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	ND	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Aluminum	0.33	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	180	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	0.38	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	ND	4.0	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.059	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	6 12:35					
Aluminum	0.95	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	360	10	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	1.1	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	6.1	4.0	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.73	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	6 12:35					
Aluminum	0.67	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	250	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	0.87	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	4.8	4.0	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.082	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported: 03/14/06 10:19

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3369
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35			<u> </u>		
Aluminum	0.77	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	320	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	1.1	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	4.9	4.0	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.15	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
C-B07-6 (0602559-06) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
Aluminum	0.34	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	240	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	3.0	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	23	4.0	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.71	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
Aluminum	1.1	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	230	10	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	1.4	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	17	4.0	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.86	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
Aluminum	0.16	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	73	10	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	0.40	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.13	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	

Ocean Blue Env. Services

Project: Storm Water

2775 Kurtz St.

Project Number: SA 3369

San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	5 12:35					
Aluminum	6.2	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	45	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	8.5	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	10	4.0	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.14	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:	00 Receiv	ed: 02/28	3/06 12:35					
Aluminum	0.37	0.063	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Copper	22	10	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Iron	0.51	0.064	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	
Lead	4.3	4.0	μg/L	2	B6C0636	03/06/06	03/08/06	EPA 200.8	
Zinc	0.11	0.024	mg/L	1	B6C0622	03/06/06	03/07/06	EPA 200.7	

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Metals (Dissolved) by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	ND	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	130	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	_
Lead	ND	4.0	"	"	"	"	"	"	
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	310	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	200	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	310	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B07-6 (0602559-06) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	34	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Copper	160	10	μg/L	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Metals (Dissolved) by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
Copper Lead	23 ND	10 4.0	μg/L "	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
Copper Lead	26 ND	10 4.0	μg/L "	2	B6C0638	03/06/06	03/08/06	EPA 200.8	
SNPTDY-3 (0602559-10) Liqui	d Sampled: 02/27/06 00:	00 Receiv	ed: 02/2	8/06 12:35					
Copper Lead	14 ND	10 4.0	μg/L "	2	B6C0638	03/06/06	03/08/06	EPA 200.8	

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	ND	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	ND	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	_
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	3.7	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	ND	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	ND	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B07-6 (0602559-06) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	ND	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	4.4	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	2.5	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
TRPH	ND	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	_

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR Sierra Analytical Labs, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:00	Receiv	ed: 02/2	8/06 12:35					
TRPH	48	1.0	mg/L	1	B6C0248	03/02/06	03/02/06	EPA 418.1	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3369 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/0	6 12:35					
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	,,	"	"	,,	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	,,	"	"	
cis-1,3-Dichloropropene	ND ND	1.0	"	,,	"	,,	,,	"	
trans-1,3-Dichloropropene	ND	1.0	"	,,	"	,,	,,	"	
Ethylbenzene	ND ND	1.0	"	"	"	,,	,,	,,	
			,,	"	"	,,	,,	"	
Methylene chloride	ND	1.0	,,	"	"	,,	,,	"	
1,1,2,2-Tetrachloroethane	ND	1.0	,,	"	"	"			
Tetrachloroethene	ND	1.0	,,	"	"	,,	,,		
Toluene	ND	1.0	"	"	"	,,	,,	"	
1,1,1-Trichloroethane	ND	1.0		"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"		"		"		
Trichloroethene	ND	1.0	"	"		"		"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ine	108 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		106 %	88-	-110	"	"	"	"	

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received	02/28/00	6 12:35					
Surrogate: 4-Bromofluorobenze	ne	89.4 %	86-	-115	B6C0201	02/28/06	02/28/06	EPA 624	
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received	: 02/28/00	6 12:35					
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	**	"	"	"	"	"	
Dibromochloromethane	ND	1.0	**	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	n .	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	n .	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	**	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	,,	"	"	"	"	"	
1,1-Dichloropropene	ND ND	1.0	,,	"	"	,,	"	"	
cis-1,3-Dichloropropene	ND	1.0	,,	"	"	,,	,,	"	
trans-1,3-Dichloropropene	ND ND	1.0	,,	,,	"	,,	,,	"	
Ethylbenzene	ND ND	1.0	,,	,,	"	,,	,,	"	
•	ND ND	1.0	,,	"	"	,,	,,	,,	
Methylene chloride 1,1,2,2-Tetrachloroethane			,,	"	,,	,,	,,	,,	
	ND	1.0	"	"	"	,,	,,	,,	
Tetrachloroethene	ND	1.0	,,	,,	"		,,		
Toluene	ND	1.0	"		"	,	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0		"	"	"	"		
Trichlorofluoromethane	ND	1.0	"		"			"	
Vinyl chloride	ND	1.0	"	"		"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	

San Diego CA, 92110

Project: Storm Water Project Number: SA 3369 Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Methyl tert-butyl ether	ND	1.0	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Surrogate: Dibromofluorometha	ine	106 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		105 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	90.6 %	86-	-115	"	"	"	"	
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	n .	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"		"	"	
1,4-Dichlorobenzene	ND ND	1.0	"	"	"	,,	"	"	
1,1-Dichloroethane	ND ND	1.0	"	"	"	"	"	,,	
1,2-Dichloroethane	ND ND	1.0	"	"	"	,,	"	"	
The state of the s			,,		"	,,	"		
1,1-Dichloroethene	ND	1.0	,,	,,	"	,,	"		
cis-1,2-Dichloroethene	ND	1.0	,,		"	,,	"		
trans-1,2-Dichloroethene	ND	1.0	"	,,	"		"	"	
1,2-Dichloropropane	ND	1.0	"	.,	"		"	"	
1,1-Dichloropropene	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	

San Diego CA, 92110

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Vinyl chloride	ND	1.0	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ine	104 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		106 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzei	ne	90.4 %	86-	-115	"	"	"	"	
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	**	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	m m	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	

San Diego CA, 92110

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

		Sierra An	iary treat	1 12405, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	12:35					
1,1,2-Trichloroethane	ND	1.0	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	n	
Surrogate: Dibromofluorometho	ane	106 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		106 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	rne	91.6 %	86-	115	"	"	"	"	
C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	12:35					
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	· ·	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"		"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"		"	
Chlorobenzene	ND	1.0	"	"	"	"		"	
Chloroethane	ND	1.0	"	"	"	"		"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	,,	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	,,	"	
Dibromochloromethane	ND	1.0	"	"	"	"	,,	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	,,	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	,,	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	,,	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	,,	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	,,	"	
1,1-Dichloroethene	ND ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND ND	1.0	"	"	"	"	,,	"	
trans-1,2-Dichloroethene	ND ND	1.0	"	"	"	"	,,	"	
1,2-Dichloropropane	ND ND	1.0	"	"	"	"	,,	"	
1,1-Dichloropropene	ND ND	1.0	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND ND	1.0	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND ND	1.0	,,	"	"	"	,,	"	
Ethylbenzene	ND ND	1.0	"	,,	"	,,	,,	"	
			"	,,	"	"	,,	"	
Methylene chloride	ND ND	1.0	"	,,	"	"	,,		
1,1,2,2-Tetrachloroethane	ND	1.0	**	"		"	"		

San Diego CA, 92110

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

C-RI66-5 (1602559-05) Liquid Sampled: 02/27/06 00:00 Received: 02/28/06 12:35			olei i a Aii	imij tien	1 2005, 1					
Tetrachloroethene	Analyte	Result	, .	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Toluene	C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	12:35					
	Tetrachloroethene	ND	1.0	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
1,12-Trichloroethane	Toluene	ND	1.0	"	"	"	"	"	"	
Trichlorothene	1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	Trichloroethene	ND	1.0	"	"	"	"	"	"	
ND	Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
o-Sylene ND 1.0 " <t< td=""><td>Vinyl chloride</td><td>ND</td><td>1.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Vinyl chloride	ND	1.0	"	"	"	"	"	"	
o-Sylene ND 1.0 " <t< td=""><td>•</td><td></td><td>1.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	•		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether ND		ND	1.0	"	"	"	"	"	"	
107 % 88-110 " " " " " " " " " " " " " "	Methyl tert-butyl ether			"	"	"	"	"	"	
107 % 88-110	Surrogate: Dibromofluorometha	ine	109 %	86-	118	"	"	"	"	
Surrogate: 4-Bromofluorobenzene 90.4 % 86-115 " " " " " " "						"	"	"	"	
Acrolein		ne				"	"	"	"	
Acrolein ND 10 µg/L 1 B6C0201 02/28/06 D2728/06 EPA 624 Acrylonitrile ND 10 " " " " " " " " " " " " " " " Benzene ND 1.0 " " " " " " " " " " " " " " " " " " "										
Acrylonitrile ND 10 " " " " " " " " "										
Benzene ND 1.0 " " " " " " " " "										
Bromoberzene ND 1.0 " " " " " " " " " " " " " " " " " " "	•									
Bromodichloromethane ND 1.0 " " " " " " " " "										
Bromoform ND 1.0 " " " " " " " " "										
Bromomethane ND 1.0 " " " " " " " " "										
Carbon tetrachloride										
Chlorobenzene ND 1.0 "										
Chloroethane ND 1.0 "								"	"	
2-Chloroethylvinyl ether										
Chloroform ND 1.0 " <	Chloroethane			"	"	"	"	"	"	
Chloromethane ND 1.0 "	2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
ND	Chloroform	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 1.0 " <td>Chloromethane</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chloromethane	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 1.0 " <td>Dibromochloromethane</td> <td>ND</td> <td>1.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane ND 1.0 "	1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND 1.0 "	1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene ND 1.0 "	1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
ND 1.0 "	1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND 1.0 " " " " " " " " " " " " 1,2-Dichloropropane ND 1.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND 1.0 " " " " " " " " " " " " 1,2-Dichloropropane ND 1.0 " " " " " " " " " " " " " " " " " " "	cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane ND 1.0 " <td>trans-1,2-Dichloroethene</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	trans-1,2-Dichloroethene			"	"	"	"	"	"	
1,1-Dichloropropene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,2-Dichloropropane	ND	1.0	"	"	"	"		"	
cis-1,3-Dichloropropene ND 1.0 " " " " " "	, , ,			"	"	"	"	"	"	
				"	"	"	"	"	"	
	trans-1,3-Dichloropropene			"	"	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3369 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	ampled: 02/27/06 00:00					P			
Ethylbenzene	ND	1.0	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	1.0	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		107 %		110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %		115	"	"	"	"	
-	ampled: 02/27/06 00:00								
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	02/28/06	EPA 624	
Acrylonitrile	ND ND	10	μg/L "	1 "	B0C0201	11	02/28/00	EFA 024	
Benzene	ND ND	1.0	"	,,	"	"	,,	"	
Bromobenzene	ND ND	1.0	"	"	"	"	,,	"	
Bromodichloromethane	ND ND	1.0	,,	,,	"	"	,,	"	
Bromoform	ND ND	1.0	"	,,	,,	"	,,	,,	
Bromomethane	ND ND	1.0	"	,,	"	"	,,	,,	
Carbon tetrachloride	ND ND	1.0	"	,,	"	"	,,	,,	
Chlorobenzene	ND ND	1.0	"	"	"	"	,,	,,	
Chloroethane	ND ND	1.0	"	,,	,,	"	,,	,,	
2-Chloroethylvinyl ether	ND ND	1.0	"	"	,,	"	"	"	
Chloroform	ND ND	1.0	"	"	,,	"	"	"	
Chloromethane	ND ND	1.0	"	"	,,	"	"	"	
Dibromochloromethane	ND ND	1.0	"	"	,,	"	"	"	
1,2-Dichlorobenzene	ND ND	1.0	"	"	,,	"	"	"	
1,3-Dichlorobenzene	ND ND	1.0	"	"	,,	"	"	"	
1,4-Dichlorobenzene	ND ND	1.0	"	"	,,	"	"	"	
1,1-Dichloroethane	ND ND	1.0	"	"	,,	"	"	"	
1,2-Dichloroethane	ND ND	1.0	"	"	,,	"	"	"	
1,1-Dichloroethene	ND ND	1.0	"	"	,,	"	"	"	
cis-1,2-Dichloroethene	ND ND	1.0	"	"	"	"	,,	"	
CINET ZELDCHIOLOPINENE	ND	1.0						**	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

Ocean Blue Env. Services

2775 Kurtz St. San Diego CA, 92110 Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

A 1 4	n 1	Reporting	TI '4	Dil c	D. (1	n 1	A 1 1	M d d	NI.
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	12:35					
1,1-Dichloropropene	ND	1.0	$\mu g/L$	1	B6C0201	02/28/06	02/28/06	EPA 624	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ne	110 %	86-	118	"	"	"	"	
-		108 %	88-	110	"	"	"	"	
Surrogate: Toluene-d8	ne	108 % 89 6 %		110 115	"	"	"	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer		89.6 %	86-	115					
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	89.6 % Received:	86- 02/28/0 6	115 5 12:35	"	"	"	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein	Sampled: 02/27/06 00:00 ND	89.6 % Received:	86- 02/28/06 μg/L	115 5 12:35	" B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile	ND ND	89.6 % Received: 10 10	86- 02/28/06 μg/L	115 5 12:35	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene	ND ND ND ND ND	89.6 % Received: 10 10 10 1.0	86- 02/28/06 μg/L "	115 5 12:35	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene	ND ND ND ND ND ND ND	89.6 % Received: 10 10 1.0 1.0	86- 02/28/06 μg/L "	115 5 12:35	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane	ND ND ND ND ND ND ND ND ND	89.6 % Received: 10 10 1.0 1.0 1.0 1.0	86- 02/28/06 μg/L "	115 5 12:35	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform	ND N	89.6 % Received: 10 10 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " "	115	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane	ND N	89.6 % Received: 10 10 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " "	115	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride	ND N	89.6 % Received: 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " "	115	B6C0201 " " " " " "	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene	ND N	89.6 % Received: 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 μg/L " " " " " "	115	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane	ND N	89.6 % Received: 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 μg/L " " " " " " "	115	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether	Sampled: 02/27/06 00:00 ND	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 μg/L " " " " " " " " "	115	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform	ND N	89.6 % Received: 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 μg/L " " " " " " " " "	115	B6C0201	02/28/06	03/01/06	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane	Sampled: 02/27/06 00:00 ND	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " "	115	" " " " " " " " " "	02/28/06	"""""""""""""""""""""""""""""""""""""""	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane	Sampled: 02/27/06 00:00 ND	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " " " "	115	" " " " " " " " " " " "	02/28/06	"""""""""""""""""""""""""""""""""""""""	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	Sampled: 02/27/06 00:00 ND	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " "	115	" " " " " " " " " "	02/28/06	"""""""""""""""""""""""""""""""""""""""	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND N	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " " " "	115	" " " " " " " " " " " "	02/28/06	"""""""""""""""""""""""""""""""""""""""	EPA 624	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	Sampled: 02/27/06 00:00 ND	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " " " " "	115	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " "	" EPA 624 " " " " " " " " " " " " " " " " " "	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND N	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " " " " " " "	115	B6C0201 " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " "	" EPA 624 " " " " " " " " " " " " " " " " " " "	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzer C-B08-8 (0602559-08) Liquid Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	Sampled: 02/27/06 00:00 ND	89.6 % Received: 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	86- 02/28/06 µg/L " " " " " " " " " " " " " " "	115	" B6C0201 " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " "	" EPA 624 " " " " " " " " " " " " " " " " " " "	

San Diego CA, 92110

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

	Reporting							
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
d: 02/27/06 00:00	Received:	02/28/06	12:35					
ND	1.0	μg/L	1	B6C0201	02/28/06	03/01/06	EPA 624	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
	107 %	86-	118	"	"	"	"	
	108 %	88-	110	"	"	"	"	
	90.8 %	86-	115	"	"	"	"	
d: 02/27/06 00:00	Received:	02/28/06	12:35					
ND	10	μg/L	1	B6C0201	02/28/06	03/01/06	EPA 624	
ND	10	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
	1.0	"	"	"		,,	"	
ND	1.0							
ND ND	1.0	"	"	"	"	"	n	
		"	"	"	"	"	"	
ND ND	1.0 1.0							
ND ND ND	1.0 1.0 1.0	"	"	"	"	"	"	
ND ND ND ND	1.0 1.0 1.0 1.0	"	"	"	"	"	"	
ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0	"	"	"	"	"	" "	
ND ND ND ND	1.0 1.0 1.0 1.0	" "	" "	" " "	" " "	"	11 11 11	
	ND N	ND 1.0	ND 1.0 μg/L ND 1.0 "	ND 1.0 " " " ND 1.0 " " " ND ND 1.0 " " " " " ND ND 1.0 " " " " " " ND ND 1.0 " " " " " " " " " " " " " " " " " " "	ND 1.0 μg/L 1 B6C0201 ND 1.0 " " " " " " " " " ND 1.0 " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " " ND 1.0 " " " " " " " " ND 1.0 " " " " " " " " " ND 1.0 " " " " " " " " " ND 1.0 " " " " " " " " " " "	ND 1.0 μg/L 1 B6C0201 02/28/06 ND 1.0 " " " " " ND 1.0 " " " " " d: 02/27/06 00:00 Received: 02/28/06 12:35 ND 10 " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " " ND 1.0 " " " " " " " " ND 1.0 " " " " " " " " " ND 1.0 " " " " " " " " " ND 1.0 " " " " " " " " " ND 1.0 " " " " " " " " " " ND 1.0 " " " " " " " " " " " " " " " " " " "	ND 1.0 μg/L 1 B6C0201 02/28/06 03/01/06 ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " " d: 02/27/06 00:00 Received: 02/28/06 12:35	ND

San Diego CA, 92110

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
1,1-Dichloroethane	ND	1.0	μg/L	1	B6C0201	02/28/06	03/01/06	EPA 624	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ine	110 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		107 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	91.6 %	86-	-115	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3369 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:00	Receiv	ed: 02/28	3/06 12:35					
Acrolein	ND	10	μg/L	1	B6C0201	02/28/06	03/01/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		106 %		110	"	"	"	"	

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:00	Receiv	ed: 02/28/0	6 12:35					
Surrogate: 4-Bromofluorobenzene		89.6 %	86-11	5	B6C0201	02/28/06	03/01/06	EPA 624	

San Diego CA, 92110

Ocean Blue Env. Services 2775 Kurtz St. Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	n .	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluen	e	98.0 %	70-	-125	"	"	"	"	
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluen	e	101 %	70-	-125	"	"	"	"	
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	n	
Ethylbenzene	ND	0.50	"	"	"	"	"	n	
Xylenes (total)	ND	0.50	"	"	"	"	"	n	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	n	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	n	"	"	II	
Surrogate: a,a,a-Trifluorotoluen	e	106 %	70-	-125	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3369 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 03/14/06 10:19

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

		- ·							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	іе	104 %	70-	125	"	"	"	"	
C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	іе	102 %	70-	125	"	"	"	"	
C-B07-6 (0602559-06) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	1.7	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	s 77	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	1е	104 %	70-	125	"	"	"	"	

San Diego CA, 92110

Ocean Blue Env. Services 2775 Kurtz St. Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

		D 4:							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	іе	109 %	70-	125	"	"	"	"	
C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	іе	102 %	70-	125	"	"	"	"	
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	ne	102 %	70-	125	"	"	"	"	

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3369

2775 Kurtz St.Project Number: SA 3369Reported:San Diego CA, 92110Project Manager: Don Ostrand03/14/06 10:19

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:00	Receiv	ed: 02/28/	06 12:35					
Benzene	ND	0.50	μg/L	1	B6C0114	03/01/06	03/01/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene	9	99.5 %	70-1	25	"	"	"	"	

Reported: 03/14/06 10:19

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

			<u>-</u>	1 Labs, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0602559-01) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/03/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		121 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	64.7 %	42-	147	"	"	"	"	
C-B03-2 (0602559-02) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/03/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		135 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	71.1 %	42-	147	"	"	"	"	
C-B05-3 (0602559-03) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/03/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	n .	
PCB-1242	ND	0.50	"	"	"	"	"	n .	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		106 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	62.3 %	42-	147	"	"	"	"	

Reported: 03/14/06 10:19

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

			<u>-</u>	1 Labs, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4 (0602559-04) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	6 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/03/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		132 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	63.1 %	42-	147	"	"	"	"	
C-B06-5 (0602559-05) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/03/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	n .	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	n .	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		101 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	53.9 %		147	"	"	"	"	
C-B07-6 (0602559-06) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/00	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/03/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	n .	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		103 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	53.5 %	42-	147	"	"	"	"	

Reported: 03/14/06 10:19

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

	p. 5	Reporting		D.1 4;	D 4 1	D 1	A 1 1	Mala	N .
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0602559-07) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/04/06	EPA 8082	_
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	n .	
Surrogate: Decachlorobiphenyl		104 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xy	lene	56.1 %	42-	147	"	"	"	"	
C-B08-8 (0602559-08) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/04/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	n .	
Surrogate: Decachlorobiphenyl		94.5 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xy	lene	53.2 %	42-	147	"	"	"	"	
C-B04-9 (0602559-09) Liquid	Sampled: 02/27/06 00:00	Received:	02/28/06	5 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/04/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		109 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xy	lene	59.6 %	42-	147	"	"	"	"	

Reported: 03/14/06 10:19

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SNPTDY-3 (0602559-10) Liquid	Sampled: 02/27/06 00:00	Receiv	ed: 02/28/	/06 12:35					
PCB-1016	ND	0.50	μg/L	1	B6C0721	03/02/06	03/04/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		101 %	42-1	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xylen	e :	54.3 %	42-1	147	"	"	"	"	

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Metals by EPA 200 Series Methods - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C0622 - EPA 200 Series										
Blank (B6C0622-BLK1)				Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	ND	0.063	mg/L							
Iron	ND	0.064	"							
Zinc	ND	0.024	"							
Blank (B6C0622-BLK2)				Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	ND	0.063	mg/L							
Iron	ND	0.064	"							
Zinc	ND	0.024	"							
LCS (B6C0622-BS1)				Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	0.196	0.063	mg/L	0.200		98.0	75-125			
Iron	0.217	0.064	"	0.200		108	70-130			
Zinc	0.197	0.024	"	0.200		98.5	85-115			
LCS (B6C0622-BS2)				Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	0.189	0.063	mg/L	0.200		94.5	75-125			
Iron	0.211	0.064	"	0.200		106	70-130			
Zinc	0.192	0.024	"	0.200		96.0	85-115			
Matrix Spike (B6C0622-MS1)	Sou	rce: 060255	9-01	Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	0.253	0.063	mg/L	0.200	0.051	101	70-130			
Iron	0.278	0.064	"	0.200	0.064	107	70-130			
Zinc	0.210	0.024	"	0.200	0.020	95.0	70-130			
Matrix Spike (B6C0622-MS2)	Sou	rce: 060306	6-01	Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	0.298	0.063	mg/L	0.200	0.10	99.0	70-130			
Iron	0.385	0.064	"	0.200	0.18	102	70-130			
Zinc	0.196	0.024	"	0.200	ND	98.0	70-130			

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B6C0622 - EPA 200 Series										
Matrix Spike Dup (B6C0622-MSD1)	Sou	rce: 060255	9-01	Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	0.247	0.063	mg/L	0.200	0.051	98.0	70-130	2.40	20	
Iron	0.273	0.064	"	0.200	0.064	104	70-130	1.81	20	
Zinc	0.208	0.024	"	0.200	0.020	94.0	70-130	0.957	20	
Matrix Spike Dup (B6C0622-MSD2)	Sou	rce: 060306	6-01	Prepared:	03/06/06	Analyzed	1: 03/07/06			
Aluminum	0.316	0.063	mg/L	0.200	0.10	108	70-130	5.86	20	
Iron	0.400	0.064	"	0.200	0.18	110	70-130	3.82	20	
Zinc	0.196	0.024	"	0.200	ND	98.0	70-130	0.00	20	
Batch B6C0636 - EPA 200 Series										
Blank (B6C0636-BLK1)				Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
Blank (B6C0636-BLK2)				Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
LCS (B6C0636-BS1)				Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	98.3	10	μg/L	100		98.3	85-115			
Lead	101	4.0	"	100		101	85-115			
LCS (B6C0636-BS2)				Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	101	10	μg/L	100		101	85-115			
Lead	103	4.0	"	100		103	85-115			

Project Number: SA 3369
Project Manager: Don Ostrand

Spike

Source

Reported: 03/14/06 10:19

RPD

%REC

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Reporting

		reporting		Spike Source /steec						
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C0636 - EPA 200 Series										
Matrix Spike (B6C0636-MS1)	Sour	ce: 060255	9-01	Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	112	10	μg/L	100	11	101	70-130			
Lead	109	4.0	"	100	4.8	104	70-130			
Matrix Spike (B6C0636-MS2)	Sour	Source: 0603067-01 Pro			03/06/06					
Copper	113	10	μg/L	100	21	92.0	70-130			
Lead	106	4.0	"	100	6.3	99.7	70-130			
Matrix Spike Dup (B6C0636-MSD1)	Sour	ce: 060255	9-01	Prepared:	03/06/06	Analyzed				
Copper	111	10	μg/L	100	11	100	70-130	0.897	20	
Lead	107	4.0	"	100	4.8	102	70-130	1.85	20	
Matrix Spike Dup (B6C0636-MSD2)	Sour	ce: 060306	7-01	Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	113	10	μg/L	100	21	92.0	70-130	0.00	20	
Lead	102	4.0	"	100	6.3	95.7	70-130	3.85	20	

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

RPD

%REC

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

Reporting

		reporting		Spine	Bource		/orce		ICI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C0638 - EPA 200 Series										
Blank (B6C0638-BLK1)				Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
LCS (B6C0638-BS1)				Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	102	10	μg/L	100		102	85-115			
Lead	96.7	4.0	"	100		96.7	85-115			
Matrix Spike (B6C0638-MS1)	Sour	ce: 060255	9-01	Prepared:	03/06/06	Analyzed	1: 03/08/06			
Copper	103	10	μg/L	100	4.1	98.9	70-130			
Lead	93.7	4.0	"	100	ND	93.7	70-130			
Matrix Spike Dup (B6C0638-MSD1)	Sour	Source: 0602559-01			Prepared: 03/06/06 Analyzed: 03/08/06					
Copper	104	10	μg/L	100	4.1	99.9	70-130	0.966	20	
Lead	96.2	4.0	"	100	ND	96.2	70-130	2.63	20	

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

RPD

%REC

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B6C0248 - EPA 3510C Sep	Funnel										
Blank (B6C0248-BLK1)				Prepared	& Analyz	ed: 03/02/	06				
TRPH	ND	1.0	mg/L								
LCS (B6C0248-BS1)				Prepared & Analyzed: 03/02/06							
TRPH	9.83	1.0	mg/L	10.0		98.3	80-120				
LCS (B6C0248-BS2)				Prepared	& Analyz	ed: 03/02/	06				
TRPH	10.2	1.0	mg/L	10.0	-	102	80-120				
LCS Dup (B6C0248-BSD1)				Prepared	& Analyz	ed: 03/02/	06				
TRPH	9.75	1.0	mg/L	10.0		97.5	80-120	0.817	30		

San Diego CA, 92110

Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch B6C0201 - EPA 5030B P & T

Blank (B6C0201-BLK1)				Prepared & Analyzed: 02/28/06
Acrolein	ND	10	μg/L	
Acrylonitrile	ND	10	"	
Benzene	ND	1.0	"	
Bromobenzene	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
Carbon tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
2-Chloroethylvinyl ether	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
trans-1,3-Dichloropropene	ND	1.0	"	
Ethylbenzene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
Toluene	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
m,p-Xylene	ND	1.0	"	

1,1-Dichloroethene

Trichloroethene

Toluene

Batch B6C0201 - EPA 5030B P & T

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6C0201-BLK1)				Prepared &	& Analyze	d: 02/28/	706				
o-Xylene	ND	1.0	μg/L								
Methyl tert-butyl ether	ND	1.0	"								
Surrogate: Dibromofluoromethane	51.1		"	50.0		102	86-118				
Surrogate: Toluene-d8	52.6		"	50.0		105	88-110				
Surrogate: 4-Bromofluorobenzene	44.5		"	50.0		89.0	86-115				
LCS (B6C0201-BS1)		Prepared & Analyzed: 02/28/06									
Benzene	49.1	1.0	μg/L	50.0		98.2	80-120				
Chlorobenzene	49.2	1.0	"	50.0		98.4	80-120				
1,1-Dichloroethene	43.0	1.0	"	50.0		86.0	80-120				
Toluene	51.0	1.0	"	50.0		102	80-120				
Trichloroethene	47.3	1.0	"	50.0		94.6	80-120				
Matrix Spike (B6C0201-MS1)	Source	e: 0602552	2-01	Prepared:	02/28/06	Analyze	1: 03/01/06				
Benzene	50.7	1.0	μg/L	50.0	ND	101	37-151				
Chlorobenzene	49.1	1.0	"	50.0	ND	98.2	37-160				

Matrix Spike Dup (B6C0201-MSD1)	Sourc	Prepared: 02/28/06 Analyzed: 03/01/06								
Benzene	54.3	1.0	μg/L	50.0	ND	109	37-151	6.86	30	
Chlorobenzene	52.8	1.0	"	50.0	ND	106	37-160	7.26	30	
1,1-Dichloroethene	45.8	1.0	"	50.0	ND	91.6	50-150	4.24	30	
Toluene	57.2	1.0	"	50.0	ND	114	47-150	9.52	30	
Trichloroethene	54.5	1.0	"	50.0	ND	109	71-157	6.64	30	

50.0

50.0

50.0

ND

ND

ND

87.8

104

102

50-150

47-150

71-157

1.0

1.0

1.0

43.9

52.0

51.0

Ethylbenzene

Gasoline Range Hydrocarbons (C4-C12)

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3369

 2775 Kurtz St.
 Project Number:
 SA 3369
 Reported:

 San Diego CA, 92110
 Project Manager:
 Don Ostrand
 03/14/06 10:19

Spike

40.0

600

ND

ND

85.8

114

32-160

50-150

Source

%REC

RPD

30

30

8.19

12.3

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series - Quality Control Sierra Analytical Labs, Inc.

Reporting

34.3

682

0.50

50

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C0114 - EPA 5030B P & T										
Blank (B6C0114-BLK1)				Prepared	& Analyz	ed: 03/01/0	06			
Benzene	ND	0.50	μg/L							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	"							
Methyl tert-butyl ether	ND	5.0	"							
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"							
Surrogate: a,a,a-Trifluorotoluene	16.7		"	20.0		83.5	70-125			
LCS (B6C0114-BS1)	Prepared & Analyzed: 03/01/06									
Benzene	33.1	0.50	μg/L	40.0		82.8	80-120			
Toluene	33.6	0.50	"	40.0		84.0	80-120			
Ethylbenzene	33.6	0.50	"	40.0		84.0	80-120			
Gasoline Range Hydrocarbons (C4-C12)	562	50	"	600		93.7	80-120			
Matrix Spike (B6C0114-MS1)	Sour	ce: 060255	9-10	Prepared	& Analyz	ed: 03/01/0	06			
Benzene	31.5	0.50	μg/L	40.0	ND	78.8	39-150			
Toluene	31.8	0.50	"	40.0	ND	79.5	46-148			
Ethylbenzene	31.6	0.50	"	40.0	ND	79.0	32-160			
Gasoline Range Hydrocarbons (C4-C12)	771	50	"	600	ND	128	50-150			
Matrix Spike Dup (B6C0114-MSD1)	Source: 0602559-10 Prepared & Analyzed: 03/01/06									
Benzene	34.0	0.50	μg/L	40.0	ND	85.0	39-150	7.63	30	
Toluene	34.4	0.50	"	40.0	ND	86.0	46-148	7.85	30	

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3369
Project Manager: Don Ostrand

Reported: 03/14/06 10:19

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6C0721-BLK1)				Prepared & Ana	alyzed: 03/03/0	06			
PCB-1016	ND	0.50	μg/L	*					
PCB-1221	ND	0.50	"						
PCB-1232	ND	0.50	"						
PCB-1242	ND	0.50	"						
PCB-1248	ND	0.50	"						
PCB-1254	ND	0.50	"						
PCB-1260	ND	0.50	"						
Surrogate: Decachlorobiphenyl	0.708		"	0.750	94.4	42-147			
Surrogate: Tetrachloro-meta-xylene	0.407		"	0.750	54.3	42-147			
LCS (B6C0721-BS1)				Prepared & Ana	alyzed: 03/03/0	06			
PCB-1260	2.74	0.50	μg/L	2.50	110	80-120			
LCS (B6C0721-BS2)				Prepared & Ana	alyzed: 03/03/0	06			
PCB-1260	2.65	0.50	μg/L	2.50	106	80-120			
LCS Dup (B6C0721-BSD1)				Prepared & Ana	alyzed: 03/03/0	06			
PCB-1260	2.69	0.50	μg/L	2.50	108	80-120	1.84	30	

Reported: 03/14/06 10:19

Notes and Definitions

H-01 Sample received without sufficient time to complete analysis within recommended holding time.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 [714] 730-6239 FAX (714] 730-6462 www.inesdail.com

26052 Merit Circle, Suite #105 Sierra Analytical Labs, Inc.

Client:

Laguna Hills, CA 92653

_iquid/10 Samples

Sample: Project Name: P.O. Number: Method:

Attention:

#0602559 0602559 **EPA 80158**

Glycols

Investigation:

Tracy Collins

REPORT

Laboratory No:

February 27, 2006 March 3, 2006 Report Date: Sampling Date:

February 28, 2006 March 3, 2006 Receiving Date: Analysis Date:

mg/L Units:

Dilution Factor: Reported By: Page 1 of 1

		Analytic	Analytical Results		
Sample ID	Sample	Ethylene Glycol	Propylene Glycol	Surrogate	Surrogate
	Description			(1-Butanoi)	% Recovery
705666-MB	Method Blank	QN	QN	84.4	84.4%
952254-1	0602559-01	ND	ND	98.4	98.4%
952254-2	0602559-02	ON	ND	99.2	99.2%
952254-2	0602559-03	ON	QN	87.5	87.5%
952254-4	0602559-04	ND	ND	98.2	98.2%
952254-5	0602559-05	QN	QN	96.4	96.4%
952254-6	0602559-06	QN	QN	94.6	94.6%
952254-7	0602559.07	ND	ΩN	94.4	94.4%
952254-8	0602559-08	QZ	ND	88.3	88 3%
952254-9	0602559-09	ND	ON	106	106%
952254-10	0602559-10	ND	QN	72.5	72.5%
Practical Quantitation Limits	ation Limits	5.0	5.0	SC = 100	APR = 50-200%
Sample RLs		5.0	5.0		

ND: Not detected, or below limit of detection.

RL: Reporting limit, or least amount of analyte quantifiable based on average

sample size used and analytical technique employed

APR: Allowable Percent Recovery

SC: Spike Concentration

Analytica/Ser/ides, Trudedall Laboratories, Inc. Smova, Project Manager

This report applies only to the samples, investigated and is not necessarity indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

PASS PASS

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING. FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

> Sierra Analytical Labs, Inc. Client:

26052 Merit Circle, Suite #105

Laguna Hills, CA 92653

Tracy Collins Attention:

Liquid/10 Samples #0602559 Sample: Project Name:

0602559 P.O. Number:

EPA 8015B Glycols Method Number: Investigation:

REPORT

705566 QA/QC Batch No:

March 3, 2006 952254 Laboratory No: Report Date: February 28, 2006 March 3, 2006 Receiving Date: Analysis Date:

February 27, 2006

Sampling Date:

mg/L Units

Reported By:

Quality Control/Quality Assurance Calibration Checks Report

	Percent	Difference	28.4%	25.4%
	Recovered	Concentration	64.2	62.7
MRCCS	Spiked	Concentration	20.0	50 0
	Flag		PASS	PASS
	Percent	Difference	2.59%	9 74%
	Recovered	Concentration	51.3	45.1
MRCVS	Spiked	Concentration	50.0	50.0
	Parameter		Ethylene Glycol	Propylene Glycol

Quality Control/Quality Assurance Spikes Report

	Smike	Q.	Carozona	Perrant Recovery	Seconery	CBB		4	Accuracy
		333			(10000)	3			624.50
Parameter	Conc.	Concel	concentration	€)	(%)	<u>\$</u>	Flag	Contr	Control Limits
		rcs	TCSD	rcs	TCSD			RPD	RPD % Recovery
Ethylene Glycol	50.0	59.5	64.2	119%	128%	7.59%	PASS	50	70-130
Propylene Glycal	50.0	50.8	58.4	102%	117%	13.9%	PASS	20	70-130

MRCVS: Aid Range Calibration Venfication Standard

MRCCS: Mid Range Calibration Check Standard (second source)

LCS: Laboratory Control Spike

LCSD Latoralory Control Spike Duplicate RPD. Relative Percent Ofference

ND: Not Delected

Flag: "Pass" if within Control Limits, otherwise Fast

Analytical Services/Truesdail Laberatories, Inc. Rossina Yomdva, Project Mahager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to chents, the public and accepted for the excusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

CHAIN OF CUSTODY RECORD

Page 2 of 2

Date: 02/11/06

CHAIN OF CO

SIERRA ANALYTICAL TEL: 949•348•9389

FAX: 949•348•9115

26052 Merit Circle Suite 105 Laguna Hills, CA 92653

Geotracker EDD Info: Field Point Names/ Client LOGCODE mos. Site Global ID Comments Return to Client ☐ Lab Disposal* Sample Disposal: Archive Other FOR LABORATORY USE ONLY - Sample Receipt Conditions: Preservatives - Venfied By Total Number of Containers Submitted to - Samples determined to be hazardous by SIERRA will be returned to CLIENT. Total Number of Containers Recieved by Chilled - Temp. (°C) The delivery of samples and the signature on this chain of custody form Constitutes authorization to perform the analysis specified above under SIERRA's Terms and Conditions, unless otherwise agreed upon in Storage Location, Lab Project No.: 5823 0808 Other, × × × × × writing between SIERRA and CLIENT. × × Analysis Requested SHOM X X × × × × X × STODATE × X × × × × X HINOWINE Laboratory Laboratory X × Appropriate Sample Container X × × X COD × × × × X X GoB Properly Labelled X × X × × × × × × Sample Seals VOLATILE OPSGADIC × × × × × Intact DISSOLVED COPPER × रा⊒तत्र X > X × No. of Containers 27 20 72 Hour 24 Hour S Day Mobile 7 Time: Date: Time: Date: Client Project ID: SA3369 Container らな下戸沢 Type ☐ Immediate Hour Normal 4 Day Preservative STBRM Time Requested の所 Turn Around る西 Matrix Received By: Received By Company: Company: Time 2-18-08 Date SAN DIEGO, CM 92110 12.40 13.27-06 SDCRMA KURTZ ST. Date Time: Time: Date Date Client Proj. Mgr.: DON OSTRAND Client Tel. No.: 619.294.6682 Client Fax. No.: 614 . 294 . 6743 Sierra No. 36 Client: OCEDAL BLUE Client Address: 2775 いれば Client Sample ID. 20 C-B07-6 SNPTDY-3 C-B06-5 C-Bos-3 C-808-8 C-B05-4 C-B04-9 C-1307-7 C-B03-7 Special Instructions: C-B01-1 Sampler Signature: Relinquished By: Relinquished By: inquished By Printed Name

DISTRIBITION White . To Accompany Samples Vellow I sharetony Pany Bink Eigld Damann Co.

Rev: 011302

CHAIN OF CUSTODY RECORD

SIERRAANALYTICAL

TEL: 949•348•9389 FAX: 949•348•9115

26052 Merit Circle Suite 105 Laguna Hills, CA 92653

Date: 02/27/06

Lab Project No.:

Geotracker EDD Info: Field Point Names/ mos. Client LOGCODE Site Global ID Comments Return to Client ☐ Lab Disposal* Sample Disposal: Archive. Other FOR LABORATORY USE ONLY - Sample Receipt Conditions: П Preservatives - Verified By MUNIMULA JATOT Total Number of Containers Submitted to writing between SIERRA and CLIENT.

* - Samples determined to be hazardous by SIERRA will be returned to CLIENT. × X X X X / Chilled - Temp. (°C) Y X Y \times Total Number of Containers Recieved by The delivery of samples and the signature on this chain of custody form

• D constitutes authorization to perform the analysis specified above under

* SIERRA's Terms and Conditions, unless otherwise agreed upon in DISSOLUED LEAD X Y X X × X Y Storage Location. χ X \prec X X X TOTAL SISTENDED SOLIDS

PH

SPECIFIC CONDUCTRISACI

OIL & GREASE

TOTAL TROM

TOTAL ZINIC × × X × × X × × × × × × X $\frac{\times}{\times}$ X Laboratory Laboratory Appropriate Sample Container $\tilde{\vec{\lambda}}$ × × × × × X × × × Property Labelled X X X × × × Sample Seals × × × × Intact HGT X **X** T S Date : 10 12:35 No. of Containers 72 Hour 24 Hour 7 Mobile Date: Time: Date: Time: 5 Day Client Project ID: 5/43369 STORM WATER Container ☐ Immediate Hour Normal 4 Day $\overline{\mathcal{J}}$ Preservative Time Requested <u>6</u> Turn Around MATERIA Matrix Received By: Received By Company: Company 92110 Time 72.45 Ime: P-37.06 Time: Date Time: Date Date SDCRAA SAN DIEGO, CM Client Proj. Mgr.: DON OSTRAND Client Fax. No.: 619.294.6743 Client Tel. No.: 619.294.6682 Sierra No. Client Address: 2775 Kurtz 23 かる Ó 8 80 90 9 9 Client: OCE MY BLUE いること Client Sample ID. -YULd/ ZB 07-6 -805-4 -808-8 P-408--806-3 -B03-2 -808-C-807-Special Instructions: Sampler Signature Reinquished By: Relinquished By Relinquished By $\hat{\mathcal{O}}$

DISTRIBUTION: White - To Accompany Samples, Yellow - Laboratory Copy, Pink - Field Personnel Copy

Ocean Blue Env. Services

2775 Kurtz St. San Diego CA, 92110

Project: Storm Water Project Number: SA 3377 Project Manager: Don Ostrand

Reported: 03/22/06 15:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B05-3	0603295-01	Liquid	03/10/06 00:00	03/13/06 08:30
C-B06-5	0603295-02	Liquid	03/10/06 00:00	03/13/06 08:30
C-B07-6	0603295-03	Liquid	03/10/06 00:00	03/13/06 08:30
C-B07-7	0603295-04	Liquid	03/10/06 00:00	03/13/06 08:30

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

			mary trear	2400, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid Sa	mpled: 03/10/06 00:00	Received	1: 03/13/06	08:30					
Ammonia as N	0.880	0.100	mg/L	1	B6C1319	03/13/06	03/13/06	EPA 350.1	
Biochemical Oxygen Demand	11.0	2.00	"	"	"	"	03/18/06	EPA 405.1	H-01
Chemical Oxygen Demand	28.0	0.100	"	"	"	"	03/13/06	EPA 410.4	
Specific Conductance (EC)	88.0	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) 2.00	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	EPA 425.1	H-01
рН	6.85	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	6.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B06-5 (0603295-02) Liquid Sa	mpled: 03/10/06 00:00	Received	l: 03/13/06	08:30					
Ammonia as N	1.63	0.100	mg/L	1	B6C1319	03/13/06	03/13/06	EPA 350.1	
Biochemical Oxygen Demand	17.0	2.00	"	"	"	"	03/18/06	EPA 405.1	H-01
Chemical Oxygen Demand	40.0	0.100	"	"	"	"	03/13/06	EPA 410.4	
Specific Conductance (EC)	98.3	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) 2.50	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	EPA 425.1	H-01
рН	6.18	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	9.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B07-6 (0603295-03) Liquid Sa	mpled: 03/10/06 00:00	Received	1: 03/13/06	08:30					
Ammonia as N	0.740	0.100	mg/L	1	B6C1319	03/13/06	03/13/06	EPA 350.1	
Biochemical Oxygen Demand	74.0	2.00	"	"	"	"	03/18/06	EPA 405.1	H-01
Chemical Oxygen Demand	142	0.100	"	"	"	"	03/13/06	EPA 410.4	
Specific Conductance (EC)	135	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) 3.10	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	n .	EPA 425.1	H-01
рН	6.27	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	70.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0603295-04) Liquid Sam	pled: 03/10/06 00:00	Received	: 03/13/06	08:30					
Ammonia as N	1.08	0.100	mg/L	1	B6C1319	03/13/06	03/13/06	EPA 350.1	
Biochemical Oxygen Demand	93.0	2.00	"	"	"	"	03/18/06	EPA 405.1	H-01
Chemical Oxygen Demand	187	0.100	"	"	"	"	03/13/06	EPA 410.4	
Specific Conductance (EC)	65.4	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HEM	4.30	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substances	ND	0.100	"	"	"	"	"	EPA 425.1	H-01
pH	6.27	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	89.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3377
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Aluminum	0.28	0.063	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Copper	87	10	$\mu g/L$	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Iron	0.30	0.064	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Zinc	0.22	0.024	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Aluminum	0.60	0.063	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Copper	120	10	$\mu g/L$	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Iron	0.63	0.064	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Zinc	0.079	0.024	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Aluminum	1.1	0.063	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Copper	110	10	μg/L	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Iron	1.8	0.064	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Zinc	0.39	0.024	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Aluminum	1.7	0.063	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Copper	95	10	$\mu g/L$	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Iron	2.2	0.064	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
Lead	14	4.0	μg/L	2	B6C1641	03/16/06	03/21/06	EPA 200.8	
Zinc	0.65	0.024	mg/L	1	B6C1637	03/16/06	03/17/06	EPA 200.7	
			-						

Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Metals (Dissolved) by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Copper Lead	90 ND	10 4.0	μg/L "	2	B6C1642	03/16/06	03/21/06	EPA 200.8	
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Copper Lead	130 ND	10 4.0	μg/L "	2	B6C1642	03/16/06	03/21/06	EPA 200.8	
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Copper Lead	76 ND	10 4.0	μg/L "	2	B6C1642	03/16/06	03/21/06	EPA 200.8	
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Copper Lead	66 ND	10 4.0	μg/L "	2	B6C1642	03/16/06	03/21/06	EPA 200.8	

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30						
ТПРН	2.0	1.0	mg/L	1	B6C1721	03/17/06	03/17/06	EPA 418.1		
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Sampled: 03/10/06 00:00 Received: 03/13/06 08:30								
TRPH	ND	1.0	mg/L	1	B6C1721	03/17/06	03/17/06	EPA 418.1		
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30						
ТПРН	1.3	1.0	mg/L	1	B6C1721	03/17/06	03/17/06	EPA 418.1		
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30						
TRPH	2.0	1.0	mg/L	1	B6C1721	03/17/06	03/17/06	EPA 418.1		

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water Project Number: SA 3377 Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Acrolein	ND	10	μg/L	1	B6C1411	03/13/06	03/13/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ne	112 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		101 %		.110	"	,,	"	"	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Surrogate: 4-Bromofluorobenze	ne	92.0 %	86	-115	B6C1411	03/13/06	03/13/06	EPA 624	
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/0	6 08:30					
Acrolein	ND	10	μg/L	1	B6C1411	03/13/06	03/13/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3377 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/06	6 08:30					
Methyl tert-butyl ether	ND	1.0	μg/L	1	B6C1411	03/13/06	03/13/06	EPA 624	
Surrogate: Dibromofluorometho	ane	116 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		101 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	90.8 %	86-	115	"	"	"	"	
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/06	6 08:30					
Acrolein	ND	10	μg/L	1	B6C1411	03/13/06	03/13/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3377 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyta		Reporting		-		Dray 1	A no1 J	Moth - 4	NT-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Vinyl chloride	ND	1.0	μg/L	1	B6C1411	03/13/06	03/13/06	EPA 624	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	n	"	ıı	"	
Surrogate: Dibromofluorometha.	ne	117 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		100 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzer	пе	90.6 %	86-	-115	"	"	"	"	
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Acrolein	ND	10	μg/L	1	B6C1411	03/13/06	03/14/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	**	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	**	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	,,	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	,,	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	,,	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND ND	1.0	"	,,	"	"	"	"	
Tetrachloroethene	ND ND	1.0	,,	,,	"	"	"	"	
Toluene	ND ND		"	,,	"	,,	"	"	
1,1,1-Trichloroethane		1.0	"	,,	"	"	"	"	
1,1,1-111cmoroetnane	ND	1.0							

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/06	08:30					
1,1,2-Trichloroethane	ND	1.0	μg/L	1	B6C1411	03/13/06	03/14/06	EPA 624	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	пе	109 %	86-	118	"	"	"	"	_
Surrogate: Toluene-d8		101 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e	90.4 %	86-	115	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St

Project Number: SA 3377

2775 Kurtz St.Project Number: SA 3377Reported:San Diego CA, 92110Project Manager: Don Ostrand03/22/06 15:22

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

		orerra ran	iary trea	i Laus, i					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Benzene	ND	0.50	μg/L	1	B6C1805	03/18/06	03/18/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	пе	106 %	70-	125	"	"	"	"	
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Benzene	ND	0.50	μg/L	1	B6C1805	03/18/06	03/18/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	іе	102 %	70-	125	"	"	"	"	
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Benzene	ND	0.50	μg/L	1	B6C1805	03/18/06	03/18/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	пе	100 %	70-	125	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St

Project Number: SA 3377

2775 Kurtz St.Project Number: SA 3377Reported:San Diego CA, 92110Project Manager: Don Ostrand03/22/06 15:22

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
Benzene	ND	0.50	μg/L	1	B6C1805	03/18/06	03/18/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	n .	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	n .	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	II	
Surrogate: a,a,a-Trifluorotoluen	e	100 %	70-	-125	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3377
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

		Reporting							1
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603295-01) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
PCB-1016	ND	0.50	μg/L	1	B6C2229	03/16/06	03/17/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	n n	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		187 %	42-	-147	"	"	"	"	S-GC
Surrogate: Tetrachloro-meta-xyi	lene	111 %	42-	-147	"	"	"	"	
C-B06-5 (0603295-02) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
PCB-1016	ND	0.50	μg/L	1	B6C2229	03/16/06	03/17/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	n n	
PCB-1260	ND	0.50	"	"	"	"	"	m m	
Surrogate: Decachlorobiphenyl		178 %	42-	-147	"	"	"	"	S-GC
Surrogate: Tetrachloro-meta-xyl	lene	98.2 %		-147	"	"	"	"	
C-B07-6 (0603295-03) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/00	6 08:30					
PCB-1016	ND	0.50	μg/L	1	B6C2229	03/16/06	03/17/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		174 %	42-	-147	"	"	"	"	S-GC
Surrogate: Tetrachloro-meta-xyl	lene	104 %		-147	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3377
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0603295-04) Liquid	Sampled: 03/10/06 00:00	Received:	03/13/06	08:30					
PCB-1016	1.6	0.50	μg/L	1	B6C2229	03/16/06	03/18/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	n .	
Surrogate: Decachlorobiphenyl		170 %	42-	147	"	"	"	"	S-GC
Surrogate: Tetrachloro-meta-xy		103 %	42-	147	"	"	"	"	

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Metals by EPA 200 Series Methods - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C1637 - EPA 200 Series										
Blank (B6C1637-BLK1)				Prepared:	03/16/06	Analyzed	1: 03/17/06			
Aluminum	ND	0.063	mg/L							
Iron	ND	0.064	"							
Zinc	ND	0.024	"							
LCS (B6C1637-BS1)				Prepared:	03/16/06	Analyzed	1: 03/17/06			
Aluminum	0.184	0.063	mg/L	0.200		92.0	75-125			
Iron	0.205	0.064	"	0.200		102	70-130			
Zinc	0.181	0.024	"	0.200		90.5	85-115			
Matrix Spike (B6C1637-MS1)	Sou	urce: 060334	5-04	Prepared:	03/16/06	Analyzed	1: 03/17/06			
Aluminum	0.200	0.063	mg/L	0.200	ND	100	70-130			
Iron	0.306	0.064	"	0.200	0.079	114	70-130			
Zinc	0.208	0.024	"	0.200	0.0077	100	70-130			
Matrix Spike Dup (B6C1637-MSD1)	Sou	urce: 060334	5-04	Prepared:	03/16/06	Analyzed	1: 03/17/06			
Aluminum	0.191	0.063	mg/L	0.200	ND	95.5	70-130	4.60	20	
Iron	0.278	0.064	"	0.200	0.079	99.5	70-130	9.59	20	
Zinc	0.198	0.024	"	0.200	0.0077	95.2	70-130	4.93	20	
Batch B6C1641 - EPA 200 Series										
Blank (B6C1641-BLK1)				Prepared:	03/16/06	Analyzed	1: 03/21/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
LCS (B6C1641-BS1)				Prepared:	03/16/06	Analyzed	1: 03/21/06			
Copper	105	10	μg/L	100		105	85-115			
Lead	111	4.0	"	100		111	85-115			

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Metals by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B6C1641	- EPA	200	Series
Daten	DUCIUTI	- 121 /	4W	DELLES

Matrix Spike (B6C1641-MS1)	Source: 0603295-01 P				03/16/06	Analyzed	d: 03/21/06			
Copper	190	10	μg/L	100	87	103	70-130			
Lead	108	4.0	"	100	ND	108	70-130			
Matrix Spike Dup (B6C1641-MSD1)	Source	e: 060329	5-01	Prepared: 03/16/06 Analyzed: 03/21/06						
Copper	188	10	μg/L	100	87	101	70-130	1.06	20	
Lead	105	4.0	"	100	ND	105	70-130	2.82	20	

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

RPD

%REC

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

Reporting

		P		~ P			,			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C1642 - EPA 200 Series										
Blank (B6C1642-BLK1)				Prepared:	03/16/06	Analyzed	: 03/21/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
LCS (B6C1642-BS1)				Prepared:	03/16/06	Analyzed	: 03/21/06			
Copper	114	10	μg/L	100		114	85-115			
Lead	111	4.0	"	100		111	85-115			
Matrix Spike (B6C1642-MS1)	Sour	ce: 060329	5-02	Prepared:	03/16/06	Analyzed	: 03/21/06			
Copper	246	10	μg/L	100	130	116	70-130			
Lead	115	4.0	"	100	ND	115	70-130			
Matrix Spike Dup (B6C1642-MSD1)	Sour	ce: 060329	5-02	Prepared:	03/16/06					
Copper	234	10	μg/L	100	130	104	70-130	5.00	20	
Lead	114	4.0	"	100	ND	114	70-130	0.873	20	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Spike

Source

Reported: 03/22/06 15:22

RPD

%REC

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR - Quality Control

Sierra Analytical Labs, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
,	resurt	Emin	Cinto		resuit	, sittle	Liinto		2	110105
Batch B6C1721 - EPA 3510C Sep	Funnel									
Blank (B6C1721-BLK1)				Prepared	& Analyz	ed: 03/17/	06			
TRPH	ND	1.0	mg/L							
LCS (B6C1721-BS1)				Prepared	& Analyz	ed: 03/17/	06			
TRPH	10.4	1.0	mg/L	10.0		104	80-120			
LCS (B6C1721-BS2)				Prepared	& Analyz	ed: 03/17/	06			
TRPH	10.7	1.0	mg/L	10.0	-	107	80-120			
LCS Dup (B6C1721-BSD1)				Prepared	& Analyz	ed: 03/17/	06			
TRPH	10.7	1.0	mg/L	10.0		107	80-120	2.84	30	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B6C1411 - EPA 5030B P & T

Blank (B6C1411-BLK1)				Prepared & Analyzed: 03/13/06
Acrolein	ND	10	μg/L	
Acrylonitrile	ND	10	"	
Benzene	ND	1.0	"	
Bromobenzene	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
Carbon tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
2-Chloroethylvinyl ether	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
trans-1,3-Dichloropropene	ND	1.0	"	
Ethylbenzene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
Toluene	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
m,p-Xylene	ND	1.0	"	

Trichloroethene

Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6C1411-BLK1)				Prepared &	& Analyz	ed: 03/13/	06			
o-Xylene	ND	1.0	μg/L	-						
Methyl tert-butyl ether	ND	1.0	"							
Surrogate: Dibromofluoromethane	57.4		"	50.0		115	86-118			
Surrogate: Toluene-d8	50.2		"	50.0		100	88-110			
Surrogate: 4-Bromofluorobenzene	44.8		"	50.0		89.6	86-115			
LCS (B6C1411-BS1)				Prepared &	& Analyz	ed: 03/13/	06			
Benzene	46.6	1.0	μg/L	50.0		93.2	80-120			
Chlorobenzene	51.7	1.0	"	50.0		103	80-120			
1,1-Dichloroethene	46.2	1.0	"	50.0		92.4	80-120			
Toluene	46.9	1.0	"	50.0		93.8	80-120			
Trichloroethene	51.5	1.0	"	50.0		103	80-120			
Matrix Spike (B6C1411-MS1)	Sourc	ce: 060327	0-01	Prepared &	& Analyz	ed: 03/13/	06			
Benzene	44.0	1.0	μg/L	50.0	ND	88.0	37-151			
Chlorobenzene	48.0	1.0	"	50.0	ND	96.0	37-160			
1,1-Dichloroethene	42.5	1.0	"	50.0	ND	85.0	50-150			
Toluene	44.4	1.0	"	50.0	ND	88.8	47-150			
Trichloroethene	47.2	1.0	"	50.0	ND	94.4	71-157			
Matrix Spike Dup (B6C1411-MSD1)	Sourc	ee: 060327	0-01	Prepared &	& Analyz	ed: 03/13/	06			
Benzene	45.7	1.0	μg/L	50.0	ND	91.4	37-151	3.79	30	
Chlorobenzene	49.0	1.0	"	50.0	ND	98.0	37-160	2.06	30	
1,1-Dichloroethene	45.2	1.0	"	50.0	ND	90.4	50-150	6.16	30	
Toluene	45.7	1.0	"	50.0	ND	91.4	47-150	2.89	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1.0

50.0

ND

99.0

71-157

4.76

30

49.5

San Diego CA, 92110

Toluene

Ethylbenzene

Gasoline Range Hydrocarbons (C4-C12)

Ocean Blue Env. Services
2775 Kurtz St. Pro

Project: Storm Water
Project Number: SA 3377 Reported:
Project Manager: Don Ostrand 03/22/06 15:22

Source

%REC

RPD

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series - Quality Control Sierra Analytical Labs, Inc.

Spike

40.0

40.0

600

ND

ND

ND

88.2

86.2

95.3

46-148

32-160

50-150

12.7

13.6

6.68

30

30

30

Reporting

35.3

34.5

572

0.50

0.50

50

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C1805 - EPA 5030B P & T										
Blank (B6C1805-BLK1)				Prepared	& Analyz	ed: 03/18/	06			
Benzene	ND	0.50	μg/L							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	"							
Methyl tert-butyl ether	ND	5.0	"							
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"							
Surrogate: a,a,a-Trifluorotoluene	19.4		"	20.0		97.0	70-125			
LCS (B6C1805-BS1)				Prepared	& Analyz	ed: 03/18/	06			
Benzene	32.6	0.50	μg/L	40.0		81.5	80-120			
Toluene	33.2	0.50	"	40.0		83.0	80-120			
Ethylbenzene	32.6	0.50	"	40.0		81.5	80-120			
Gasoline Range Hydrocarbons (C4-C12)	554	50	"	600		92.3	80-120			
Matrix Spike (B6C1805-MS1)	Sour	ce: 060329	5-04	Prepared	& Analyz	ed: 03/18/	06			
Benzene	30.6	0.50	μg/L	40.0	ND	76.5	39-150			
Toluene	31.1	0.50	"	40.0	ND	77.8	46-148			
Ethylbenzene	30.1	0.50	"	40.0	ND	75.2	32-160			
Gasoline Range Hydrocarbons (C4-C12)	535	50	"	600	ND	89.2	50-150			
Matrix Spike Dup (B6C1805-MSD1)	Sour	ce: 060329	5-04	Prepared	& Analyz	ed: 03/18/	06			
Benzene	35.1	0.50	μg/L	40.0	ND	87.8	39-150	13.7	30	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Project Manager: Don Ostrand

Polychlorinated Binhenyls by EPA Method 8082 - O

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6C2229-BLK1)				Prepared & An	alyzed: 03/17/	06			
PCB-1016	ND	0.50	μg/L						
PCB-1221	ND	0.50	"						
PCB-1232	ND	0.50	"						
PCB-1242	ND	0.50	"						
PCB-1248	ND	0.50	"						
PCB-1254	ND	0.50	"						
PCB-1260	ND	0.50	"						
Surrogate: Decachlorobiphenyl	0.962		"	0.500	192	42-147			S-GC
Surrogate: Tetrachloro-meta-xylene	0.490		"	0.500	98.0	42-147			
LCS (B6C2229-BS1)				Prepared & An	alyzed: 03/17/	06			
PCB-1260	3.60	0.50	μg/L	3.00	120	80-120			
LCS (B6C2229-BS2)				Prepared & An	alyzed: 03/17/	06			
PCB-1260	3.31	0.50	μg/L	3.00	110	80-120			
LCS Dup (B6C2229-BSD1)				Prepared & An	alyzed: 03/17/	06			
PCB-1260	3.36	0.50	μg/L	3.00	112	80-120	6.90	30	

Ocean Blue Env. Services 2775 Kurtz St.

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3377
Project Manager: Don Ostrand

Reported: 03/22/06 15:22

Notes and Definitions

H-01 Sample received without sufficient time to complete analysis within recommended holding time.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

FRUESDAIL LABORATORIES, INC.

NDEPENDENT TESTING. FORENSIC SCIENCE, AND ENVIRONMENTAL ÁNALYSES

Estabhished 1931

14201 FRANKLIN AVENUE TUSTIN. CALIFORNIA 92780-7008 1714 730-6239 FAX (714) 730-6462 - www.fulesdaii 00m

Client: Sierra Analytical Labs, Inc.

26052 Merit Circle, Suite #105 Laguna Hills, CA 92653

Attention: Tracy Collins Sample: Liquid/4 Samples

Project Name: #0603295 P.O. Number: 0603295

Method: EPA 8015B

Investigation: Glycols

REPORT

Laboratory No: 952664 Report Date: March 15, 2006

Sampling Date: March 10, 2006 Receiving Date: March 13, 2006 Analysis Date: March 15, 2006

7147306462

Units: mg/L

Reported By: MK

Dilution Factor:

Page 1 of 1

Analytical Results

				900000	difficulty
	Sample	Ethylene Glycol	Propylene Glycol	Surrogate	DIES
Sample ID	Description			(1-Butanol)	% Recovery
705694-MB	Method Blank	ΩN	ND	88.3	88.3%
05264-1	060208-01		QN	100	100%
322004	0.0025.30		- QX	88.0	88.0%
7-400706	70-C87-000		Oly	107	107%
952664-2	0603295-03	ב	2		20.00
952664-4	0603295-04	ON	ND	6.18	81.C.15
Practical Quantilation Limits	ation Limits	5.0	5.0	SC = 100	APR = 50-200%
Sample Ris		5.0	5.0		
2010					

ND: Not detected or below limit of detection.

RL: Reporting limit, or least amount of analyte quantifiable based on average

sample size used and analytical technique employed.

APR: Allowable Percent Recovery

SC Spike Concentration

his report applies only to the samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, in submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or ublicity matter without prior written authorization from these laboratories

% Recovery 70-130 70-130

RPD

2 2

PASS PASS

Control Limits

Flag

Accuracy

FRUESDAIL LABORATORIES, INC.

NDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVINOWMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.trussdan.com

REPORT

26052 Merit Circle, Suite #105

Laguna Hills, CA 92653

Liquid/4 Samples Tracy Collins

Attention: Sample: Project Name:

#0603295

0603295

P.O. Number: Method Number:

EPA 8015B

Glycois

Investigation:

Sierra Analytical Labs, Inc.

Client:

952664 QA/QC Batch No: Laboratory No:

March 10, 2006 March 15, 2006 Report Dale:

March 13, 2005 Sampling Date: Receiving Date:

March 15, 2006 Analysis Date:

mg/L ž Reported By: Units

Quality Control/Quality Assurance Calibration Checks Report

	MRCVS				MRCCS	
Parameter	Spiked	Recovered	Percent	Flag	Spiked	R
	Concentration	Concentration	Difference		Concentration	Con
Ethylene Glycol	50.0	47.3	5.46%	PASS	20 0	
Propylene Glycol	90.09	40.7	18.6%	PASS	50.0	

B E L		PASS	PASS	
Percent	Difference	11.9%	0.58%	
Recovered	Concentration	55.9	50.3	
Spiked	Concentration	50 0	50.0	

Posto//out			
יפרסגפופת	Percent Recovery	ecovery	RPD
Concentration	(%)		8
LCSD	rcs	LCSD	8
58.1	113%	116%	2.40%
53.1	101%	106%	4.61%
7			
ecend source)		<u> </u>	

500 50.0

Propylene Glycol Ethylene Glycol

Spike

Conc.

Parameter

MRCCS: And Range Calibration Check Standard (second MRCVS Mid Range Calibration Venfication Standard

LCSD Laboratory Control Spike Duplicate LCS Laboratory Control Spike

RPD: Relative Percent Ofference

ND: Not Detected

Flag: "Pass" if within Control Limits; otherwise "Fail"

Analytical Servičes, Truesdail Laboratories, Inc. Manager Rossipa Tomova, Project

Inis report applies only to the samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mulual protection to clients, the public, and these laborationes, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

CHAIN OF CUSTODY RECORD

SIERRA ANALYTICAL TEL: 949•348•9389

FAX: 949•348•9115

26052 Merit Circle Suite 105 Laguna Hills, CA 92653

Date: 03, 10, 06

Lab Project No.: OCO39995

Geotracker EDD Info: Field Point Names/ Client LOGCODE mos. Site Global ID Return to Client ☐ Lab Disposal* Sample Disposal: ☐ Archive Other Chilled - Temp. (°C) _ 'Y.O' FOR LABORATORY USE ONLY - Sample Receipt Conditions: Preservatives - Verified By. MUNIMULA JATOT メメメメメメメ Total Number of Containers Submitted to SIERRA's Terms and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT.

* - Samples determined to be hazardous by SIERRA will be returned to CLIENT. Total Number of Containers Recieved by DISSOCKED LEAD The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under Storage Location. TEX TEX TOTH TO য Laboratory Laboratory Appropriate Sample Container XX XXX Properly Labelled Sample Seals Intact ষ 凶 No. of Containers 3-13.CE Date: **8** 72 Hour 24 Hour Mobile 0 5 Day Date: Time: Time: Date: Client Project ID: SA 3377 中中 Container 4/5 Immediate 6 48 Hour Normal 4 Day Preservative Time Requested 7,7 H WATER VCE Turn Around とのでなる * AFFIX WATER Matrix Shipped Via: Received By Received By: 92110 Company: Time Relinquished By: Denal Octronal 313.06 8-10-06 p.c. KURTZ ST 2830 Fine: SAN DIEGO, CA 3.0.0 3.10.06 3.10.06 3. b.ol Date Time: Time: Date Client Proj. Mgr.: Don OSTRAND mely Athang Client Tel. No.: 64-394-6682 Client Fax. No.: 619-294-6473 OSTRAND Sierra No. 9 8 2 ◙ Client: OCEMN BLUE Client Address: 2775 SAITE Company OCEMA BLUE Client Sample ID. Printed Name; DNIMED C-1806-5 C-B07-6 C-B08-8 C-1305-3 C-B03-2 C-Bos-4 C- Bo4 - 9 C-505-J 6-1301-1 Special Instructions: Sampler Signature: 3 Relinquished By: Rev: 011302

DISTRIBUTION; White - To Accompany Samples. Yellow - Lahoratory Conv. Pink - Field Personnel Conv

CHAIN OF CUSTODY RECORD

SIERRAANALYTICAL

Date: 08/10/06 Page 2 of 2

rage of or	0603345		Geotracker EDD Info:	HOODSO IT IN	Client LOGCODE		Site Global ID	Field Point Names/ Comments									Sample Disposal:	Return to Client	☐ Lab Disposal*	Archive mos.	- 40	Omer	ions:	2	By Committee of the Com	ताछ (गडाक	
Date: D/G/	Lab Project No.:	Analysis Requested				56 70	D MM 400	17d W 75 WW 700 180	XXXXXX	メメメメ	XXXXXX	イメメメメメ					Total Number of Containers Submitted to	Laboratory	The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under	SJEKKA 1 Ferms and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. * - Samples determined to be hazardous by SIERRA will be returned to CLIENT.	Total Number of Containers Recieved by	Laboratory	FOR LABORATORY USE ONLY - Sample Receipt Conditions	Chilled-Temp. (*C).	Sample Seals Preservatives - Verified By Preservatives - Verified By Preservatives - Verified By	le Container X Storage Location	
No	S G	70	34	 	Q=	S Day CC	Mobile CO!	DIS	X X X 0/	Х Х У	χ γ -	XXX							3-13-06 The deliver Date:	SIEKKA SIEKKA Time: * - Samples dete	Date:	Time:	Date: FOR LABO	<u>.</u>	Sample Scals	· .	
	na Hills, CA•92653	Client Project ID: Project ID: Client Project ID: Client Project ID: Client Project ID: 																									

Rev: 011302

DISTRIBUTION: White - To Accompany Samples, Yellow - Laboratory Copy, Pink - Field Personnel Copy

Ocean Blue Env. Services

Project: Storm Water 2775 Kurtz St. Project Number: SA 3391 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 04/07/06 11:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C-B01-1	0603661-01	Liquid	03/28/06 00:00	03/29/06 14:30
C-B03-2	0603661-02	Liquid	03/28/06 00:00	03/29/06 14:30
C-B05-3	0603661-03	Liquid	03/28/06 00:00	03/29/06 14:30
C-B05-4	0603661-04	Liquid	03/28/06 00:00	03/29/06 14:30
C-B06-5	0603661-05	Liquid	03/28/06 00:00	03/29/06 14:30
C-B07-6	0603661-06	Liquid	03/28/06 00:00	03/29/06 14:30
C-B07-7	0603661-07	Liquid	03/28/06 00:00	03/29/06 14:30
C-B08-8	0603661-08	Liquid	03/28/06 00:00	03/29/06 14:30
C-B04-9	0603661-09	Liquid	03/28/06 00:00	03/29/06 14:30

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation. Samples requiring preservation were verified prior to sample preparation and analysis. PRESERVATION:

All holding times were met, unless otherwise noted in the report with data qualifiers. HOLDING TIMES: All quality objective criteria were met, except as noted in the report with data qualifiers. QA/QC CRITERIA:

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Ammonia as N	0.240	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Biochemical Oxygen Demand	3.00	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	64.5	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	es ND	0.100	"	"	"	"	"	EPA 425.1	
pН	7.40	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	5.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Ammonia as N	0.310	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	54.0	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	es ND	0.100	"	"	"	"	"	EPA 425.1	
pН	7.20	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	8.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Ammonia as N	0.490	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	27.1	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substan	ces 0.100	0.100	"	"	"	"	"	EPA 425.1	
рН	6.80	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	28.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Ammonia as N	0.530	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Biochemical Oxygen Demand	3.60	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	40.3	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (H	IEM) 3.10	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	ces 0.120	0.100	"	"	"	"	"	EPA 425.1	
рН	7.30	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	24.0	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Ammonia as N	0.470	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	21.0	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	es ND	0.100	"	"	"	"	"	EPA 425.1	
рН	7.20	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	3.00	1.00	mg/L	"	"	"	"	EPA 160.2	
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Ammonia as N	0.410	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Specific Conductance (EC)	30.1	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
Hexane Extractable Material (HE	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Methylene Blue Active Substance	es ND	0.100	"	"	"	"	"	EPA 425.1	
рН	7.00	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids	14.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Conventional Chemistry Parameters by APHA/EPA Methods Sierra Analytical Labs, Inc.

Biochemical Oxygen Demand										
C-B07-7 (0603661-07) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Received: 03/29/	Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ammonia as N							p			- 10100
Biochemical Oxygen Demand	C-B07-7 (0603661-07) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Chemical Oxygen Demand ND 0.100 " " " " " " EPA 400	Ammonia as N	0.420	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Specific Conductance (EC) 31.2 0.100 µmhos/cm " " " " " PA 120 PA 120 Phexane Extractable Material (HEM) ND 2.00 mg/L " " " " PA 160 PA	Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " EPA 160 Methylene Blue Active Substances ND 0.100 " " " " " EPA 160 Methylene Blue Active Substances ND 0.100 pH units " " " " EPA 150	Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Methylene Blue Active Substances ND 0.100 " " " " " " " " " " EPA 425 Total Suspended Solids 10.0 1.00 ng/L " " " " " EPA 150 C-B08-8 (0603661-08) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Ammonia as N 0.310 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Chemical Oxygen Demand ND 2.00 " " " " " " EPA 405 Specific Conductance (EC) 79.0 0.100 µmhos/cm " " " " " " " " EPA 405 Specific Conductance (EC) 79.0 0.100 µmf/L " " " " " " " " EPA 160 Methylene Blue Active Substance ND 0.100 PH Units " <th< td=""><td>Specific Conductance (EC)</td><th>31.2</th><td>0.100</td><td>μmhos/cm</td><td>"</td><td>"</td><td>"</td><td>"</td><td>EPA 120.1</td><td></td></th<>	Specific Conductance (EC)	31.2	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
PH Care C	Hexane Extractable Material (HI	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Total Suspended Solids 10.0 1.00 mg/L " " " " EPA 160 C-B08-8 (0603661-08) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Ammonia as N 0.310 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Biochemical Oxygen Demand ND 2.00 " " " " " EPA 402 Specific Conductance (EC) 79.0 0.100 mmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " EPA 120 Methylene Blue Active Substances ND 0.100 mg/L " " " " EPA 150 Total Suspended Solids 12.0 1.00 mg/L " " " EPA 150 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 B6C3028 03/29/06 03/29/06 EPA 350 C-B04-9 (0603661-09) Liquid	Methylene Blue Active Substanc	s ND	0.100	"	"	"	"	"	EPA 425.1	
C-B08-8 (0603661-08) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Ammonia as N 0.310 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Biochemical Oxygen Demand ND 0.100 " " " " " EPA 405 Chemical Oxygen Demand ND 0.100 " " " " " EPA 410 Specific Conductance (EC) 79.0 0.100 µmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " " EPA 120 Methylene Blue Active Substances ND 0.100 pH Units "	рН	6.80	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Ammonia as N 0.310 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Biochemical Oxygen Demand ND 2.00 " " " " " " " " EPA 405 Chemical Oxygen Demand ND 0.100 " " " " " " " EPA 410 Specific Conductance (EC) 79.0 0.100 μmhos/cm " " " " " " EPA 120 Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " " " " EPA 160 Methylene Blue Active Substances ND 0.100 pH Units " " " " " EPA 150 Total Suspended Solids 12.0 1.00 mg/L " " " " " " EPA 160 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Ammonia as N 0.270 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Biochemical Oxygen Demand ND 2.00 " " " " " " " " " EPA 405 Chemical Oxygen Demand ND 0.100 μm/so/cm " " " " " " EPA 410 Specific Conductance (EC) 250 0.100 μm/so/cm " " " " " " " " EPA 160 Hexane Extractable Material (HEM) 2.00 2.00 mg/L " " " " " " " " EPA 160 Methylene Blue Active Substances 0.120 0.100 " " " " " " " " " " EPA 150 pH 7.10 0.100 pH Units " " " " " " " " EPA 150	Total Suspended Solids	10.0	1.00	mg/L	"	"	"	"	EPA 160.2	
Biochemical Oxygen Demand ND 2.00 "	C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Chemical Oxygen Demand ND 0.100 " " " " " " EPA 410 Specific Conductance (EC) 79.0 0.100 µmhos/cm " " " " EPA 410 Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " EPA 120 Methylene Blue Active Substances ND 0.100 pH Units " " " " EPA 150 Total Suspended Solids 12.0 1.00 mg/L " " " " " EPA 160 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 C-B04-9 (0603661-09) Liqu	Ammonia as N	0.310	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Specific Conductance (EC) 79.0 0.100 μmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " " EPA 160 Methylene Blue Active Substances ND 0.100 " " " " " " " EPA 150 pH 7.30 0.100 pH Units " " " " " " EPA 150 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 T " " " " " " " EPA 350 Ammonia as N 0.270 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 03/29/06 EPA 350 EPA 350 Biochemical Oxygen Demand ND 0.100 mg/L " " " " " EPA 405 Specific Conductance (EC) 250 0.100 μmhos/cm " " " " " EPA 120 Hexane Extractable Material (HEM) 2.00 0 0.100 mg/L " "	Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Hexane Extractable Material (HEM) ND 2.00 mg/L " " " " " " EPA 160	Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Methylene Blue Active Substances ND 0.100 "	Specific Conductance (EC)	79.0	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
pH 7.30 0.100 pH Units " " " " " EPA 150 Total Suspended Solids 12.0 1.00 mg/L " " " " EPA 160 C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Ammonia as N 0.270 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Biochemical Oxygen Demand ND 2.00 " " " " " " EPA 405 Chemical Oxygen Demand ND 0.100 " " " " " EPA 410 Specific Conductance (EC) 250 0.100 µmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) 2.00 2.00 mg/L " " " " EPA 160 Methylene Blue Active Substances 0.120 0.100 " " " " " EPA 425 pH 7.10 0.100 pH Units " " " EPA 150	Hexane Extractable Material (HI	M) ND	2.00	mg/L	"	"	"	"	EPA 1664	
Total Suspended Solids 12.0 1.00 mg/L " <	Methylene Blue Active Substanc	s ND	0.100	"	"	"	"	"	EPA 425.1	
C-B04-9 (0603661-09) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 Ammonia as N 0.270 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 EPA 350 Biochemical Oxygen Demand ND 2.00 " " " " " " EPA 405 Chemical Oxygen Demand ND 0.100 " " " " " " EPA 410 Specific Conductance (EC) 250 0.100 µmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) 2.00 2.00 mg/L " " " " EPA 160 Methylene Blue Active Substances 0.120 0.100 " " " " " EPA 150 pH Units " " " EPA 150 EPA 150 PH Units " " " EPA 150 EPA 150 PH Units " " " EPA 150 EPA 150 PH Units " " " EPA 150 EPA 150 PH Units " " " EPA 150 EPA 150 PH Units " " " EPA 150 EPA 150 PH Units " " " " " " " EPA 150 PH Units " " " " " EPA 150 PH Units " " " " " EPA 150 PH Units " " " " " EPA 150 PH Units " " " " " " EPA 150 PH Units " " " " " " " " EPA 150 PH Units " " " " " " " " " EPA 150 PH Units " " " " " " " " " " " " " " " " " " "	рН	7.30	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Ammonia as N 0.270 0.100 mg/L 1 B6C3028 03/29/06 03/29/06 03/29/06 EPA 350 03/29/06 Biochemical Oxygen Demand ND 2.00 " " " " " " " " " EPA 405 03/29/06 EPA 350 03/29/06 EPA 405 03/29/06 <	Total Suspended Solids	12.0	1.00	mg/L	"	"	"	"	EPA 160.2	
Biochemical Oxygen Demand ND 2.00 " " " " EPA 405	C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received	1: 03/29/06	14:30					
Chemical Oxygen Demand ND 0.100 " " " " " " EFA 403 Specific Conductance (EC) 250 0.100 μmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) 2.00 2.00 mg/L " " " " EPA 160 Methylene Blue Active Substances 0.120 0.100 " " " " " EPA 425 pH 7.10 0.100 pH Units " " " EPA 150	Ammonia as N	0.270	0.100	mg/L	1	B6C3028	03/29/06	03/29/06	EPA 350.1	
Specific Conductance (EC) 250 0.100 mmhos/cm " " " " EPA 120 Hexane Extractable Material (HEM) 2.00 2.00 mg/L " " " " EPA 160 Methylene Blue Active Substances 0.120 0.100 " " " " " " EPA 425 pH 7.10 0.100 pH Units " " " " " EPA 150	Biochemical Oxygen Demand	ND	2.00	"	"	"	"	"	EPA 405.1	
Hexane Extractable Material (HEM) 2.00 2.00 mg/L " " " " " EPA 160 Methylene Blue Active Substances 0.120 0.100 " " " " " " EPA 425 pH 7.10 0.100 pH Units " " " " EPA 150	Chemical Oxygen Demand	ND	0.100	"	"	"	"	"	EPA 410.4	
Methylene Blue Active Substances 0.120 0.100 " " " " EPA 425 pH 7.10 0.100 pH Units " " " EPA 150	Specific Conductance (EC)	250	0.100	μmhos/cm	"	"	"	"	EPA 120.1	
pH 7.10 0.100 pH Units " " EPA 150	Hexane Extractable Material (EM) 2.00	2.00	mg/L	"	"	"	"	EPA 1664	
•	Methylene Blue Active Substar	es 0.120	0.100	"	"	"	"	"	EPA 425.1	
T-4-1C1-1C-1'-1- 100 100 0 11 11 11 11 11 11 11 11 11 11	pН	7.10	0.100	pH Units	"	"	"	"	EPA 150.1	H-01
Total Suspended Solids 18.0 1.00 mg/L " EPA 160	Total Suspended Solids	18.0	1.00	mg/L	"	"	"	"	EPA 160.2	

Ocean Blue Env. Services

Project: Storm Water

2775 Kurtz St.

Project Number: SA 3391

San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

			•						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Aluminum	ND	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	ND	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	ND	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	ND	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Aluminum	ND	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	49	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	ND	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	0.065	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Aluminum	0.16	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	35	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	0.17	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	0.18	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Aluminum	0.13	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	54	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	0.13	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	μg/L	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	ND	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3391
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

			•						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received:	: 03/29/00	6 14:30					
Aluminum	0.13	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	39	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	0.11	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	ND	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	: 03/29/0	6 14:30					
Aluminum	0.083	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	23	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	0.083	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	0.19	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
C-B07-7 (0603661-07) Liquid	Sampled: 03/28/06 00:00	Received:	: 03/29/00	6 14:30					
Aluminum	0.10	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	25	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	0.096	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	0.19	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received:	: 03/29/00	6 14:30					
Aluminum	ND	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	14	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	ND	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	0.091	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Aluminum	0.39	0.063	mg/L	1	B6D0311	04/03/06	04/04/06	EPA 200.7	
Copper	36	10	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Iron	0.44	0.064	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	
Lead	ND	4.0	$\mu g/L$	2	B6D0315	"	04/05/06	EPA 200.8	
Zinc	0.042	0.024	mg/L	1	B6D0311	"	04/04/06	EPA 200.7	

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals (Dissolved) by EPA 200 Series Methods Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
,					Dateii	Frepared	Anaryzeu	Wethod	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	ND	10	$\mu g/L$	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	44	10	μg/L	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	31	10	μg/L	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	51	10	μg/L	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	37	10	μg/L	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	21	10	μg/L	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	
C-B07-7 (0603661-07) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper	21	10	μg/L	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
Lead	ND	4.0	"	"	"	"	"	"	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals (Dissolved) by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper Lead	14 ND	10 4.0	μg/L "	2	B6D0316	04/03/06	04/05/06	EPA 200.8	
C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Copper Lead	30 ND	10 4.0	μg/L "	2	B6D0316	04/03/06	04/05/06	EPA 200.8	

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	1.6	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B07-7 (0603661-07) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	2.2	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	
C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
TRPH	ND	1.0	mg/L	1	B6C3104	03/30/06	03/30/06	EPA 418.1	_

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analista	D 1/2	Reporting	II	Dil C	D-/ 1	D 1	A 1 1	Made 1	37.4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ıne	101 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		96.2 %		110	"	"	"	"	
				-					

San Diego CA, 92110

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received	: 03/29/06	5 14:30					
Surrogate: 4-Bromofluorobenze	ne	103 %	86-	115	B6C3102	03/30/06	03/30/06	EPA 624	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received	: 03/29/06	5 14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	u u	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	u u	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	u u	
Ethylbenzene	ND	1.0	"	"	"	"	"	u u	
Methylene chloride	ND	1.0	"	"	"	"	"	u u	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	u u	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	••	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	••	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	••	"	"	"	"	"	
Trichloroethene	ND	1.0	••	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	**	"	"	"	"	"	
Vinyl chloride	ND	1.0	**	"	"	"	"	"	
m,p-Xylene	ND ND	1.0	**	"	"	"	"	"	
o-Xylene	ND	1.0	**	"	"	"	"	"	
0-Aylelle	ND	1.0		••					

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received	03/29/00	6 14:30					
Methyl tert-butyl ether	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Surrogate: Dibromofluorometha	ine	101 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		97.0 %		-110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	99.6 %	86-	-115	"	"	"	"	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received	03/29/00	6 14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	**	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	n .	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"		"	
2-Chloroethylvinyl ether	ND	1.0	,,	"	"	"	,,	"	
Chloroform	ND	1.0	,,	"	"	,,	"	"	
Chloromethane	ND	1.0	,,	,,	"	,,	,,	"	
Dibromochloromethane	ND ND	1.0	,,	,,	"	,,	,,	"	
1,2-Dichlorobenzene	ND ND	1.0	,,	,,	"	,,	,,	"	
*			,,	,,	"	,,	,,	,,	
1,3-Dichlorobenzene	ND	1.0	,,	"	,,	,,	,,	,,	
1,4-Dichlorobenzene	ND	1.0	,,	"		"	,,		
1,1-Dichloroethane	ND	1.0		"	"		"		
1,2-Dichloroethane	ND	1.0	"			"		"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	**	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	**	"	"	"		"	
Trichlorofluoromethane	ND	1.0	,,	,,	"	.,	,,	,,	

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Vinyl chloride	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	n .	
Surrogate: Dibromofluorometh	ane	101 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		96.2 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene	98.6 %		-115	"	"	"	"	
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/0	6 14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	**	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	m .	
Bromodichloromethane	ND	1.0	"	"	"	"	"	m .	
Bromoform	ND	1.0	"	"	"	"	"	n .	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	**	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	,,	"	"	"	"	"	
Chloromethane	ND	1.0	,,	"	"	,,	"	"	
Dibromochloromethane	ND ND	1.0	,,	,,	"	,,	"	"	
1,2-Dichlorobenzene	ND ND	1.0	,,	,,	"	,,	"	,,	
-	ND ND	1.0	,,	,,	"	"	,,	,,	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	1.0	,,	,,	"	"	,,	,,	
,	ND ND	1.0	,,	"	"	"	,,	,,	
1,1-Dichloroethane			"	,,	,,	,,			
1,2-Dichloroethane	ND	1.0	"	"	"		"		
1,1-Dichloroethene	ND	1.0	"	"	"	,,			
cis-1,2-Dichloroethene	ND	1.0	,,	"	"		"		
trans-1,2-Dichloroethene	ND	1.0	,,	"	"	,,	"		
1,2-Dichloropropane	ND	1.0	"	"		.,	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0		"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"		"		"	"	
Methylene chloride	ND	1.0	"	"		"		"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	

San Diego CA, 92110

Ocean Blue Env. Services 2775 Kurtz St.

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

C. Rob4 (16603661-04) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30 1,1,2-Trichloroethane ND 1.0 pg/L 1 B6C3102 03/30/06 03/30/06 EPA 624 Trichloroethane ND 1.0 " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " " Trichloroethane ND 1.0 " " " " " " " " " " " " Surrogate: Dibromofluoromethane 96 % 86-118 " " " " " " " " " " " Surrogate: Toltane-d8 96.2 % 88-110 " " " " " " " " " " " " Surrogate: Toltane-d8 96.2 % 88-110 " " " " " " " " " " " " Acrolein ND 10 pg/L 1 B6C3102 03/30/6 03/30/6 EPA 624 Acrylomitrile ND 10 " " " " " " " " " " " Benzene ND 1.0 " " " " " " " " " " " " Benzene ND 1.0 " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " " " " Bromodenzene ND 1.0 " " " " " " " " " " " " " " " " " "				•	,					
1,1,2-Trichloroethane	Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trichlorochene ND 1.0 "	C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received	: 03/29/06	5 14:30					
Trichloroethene ND 1.0 " " " " " " " " " " Trichloroethene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,1,2-Trichloroethane	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Trickinolitothoride	Trichloroethene	ND	1.0	"	"	"	"	"	"	
ND	Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
No	Vinyl chloride	ND	1.0	"	"	"	"	"	"	
o-Xylene ND 1.0 " " " " " " " " " " " " " " " " " " "	m,p-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether			1.0	"	"	"	"	"	"	
Surrogate: Toluene-88 96.2 % 88-110 " " " " " " " " " " "	Methyl tert-butyl ether			"	"	"	"	"	"	
Surrogate: Toluene-88 96.2 % 88-110 " " " " " " " " " " "	Surrogate: Dibromofluorometho	ane	99.6 %	86-	118	"	"	"	"	
C-B06-5 (0603661-05) Liquid Sampled: 03/28/06 00:00 Received: 03/29/06 14:30	· ·					"	"	"	"	
Acrolein		ne	101 %	86-	115	"	"	"	"	
Acrolein ND 10 μg/L 1 B6C3102 03/30/06 03/30/06 EPA 624 Acrylonitrile ND 10 " " " " " " " " " " " " " " " " " "	-		Received	: 03/29/06	5 14:30					
Actylonitrile ND 10 "	Acrolein	ND	10	ug/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Benzene ND 1.0 "										
Bromobenzene ND 1.0 "	-			"	"	"	"	"	"	
Bromodichloromethane ND 1.0 "				"	"	"	"	"	"	
Bromoform ND 1.0 " " " " " " " " "				"	"	"	"	"	"	
Brommethane ND 1.0 " " " " " " " " "				"	"	"	"	"	"	
Carbon tetrachloride ND 1.0 "				"	"	"	"	"	"	
Chlorobenzene ND 1.0 "				,,		"	"	"	"	
Chloroethane ND 1.0 "				,,		"	"	"	"	
2-Chloroethylvinyl ether ND 1.0 " " " " " " " " " " " " " " " " " " "				,,	,,	"	"	"	"	
Chloroform ND 1.0 " <				,,	,,	"	"	"	"	
Chloromethane ND 1.0 "				,,	,,	"	"	"	"	
Dibromochloromethane ND 1.0 "					,,			"	"	
1,2-Dichlorobenzene ND 1.0 " <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>"</td> <td></td>								,	"	
1,3-Dichlorobenzene ND 1.0 " <td></td>										
1,4-Dichlorobenzene ND 1.0 " <td></td>										
1,1-Dichloroethane ND 1.0 "										
1,2-Dichloroethane ND 1.0 "										
1,1-Dichloroethene ND 1.0 "										
cis-1,2-Dichloroethene ND 1.0 " <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-									
trans-1,2-Dichloroethene ND 1.0 "	-							"		
1,2-Dichloropropane ND 1.0 " <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td>								"		
1,1-Dichloropropene ND 1.0 " <td></td>										
cis-1,3-Dichloropropene ND 1.0 " </td <td></td>										
trans-1,3-Dichloropropene ND 1.0 " <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></th<>									"	
Ethylbenzene ND 1.0 " " " " " " " " Methylene chloride ND 1.0 " " " " " " " " " " " " " " " " " " "									"	
Methylene chloride ND 1.0 " " " " " "										
·	Ethylbenzene								"	
1,1,2,2-Tetrachloroethane ND 1.0 " " " " " " "	Methylene chloride							"		
	1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	

Project: Storm Water 2775 Kurtz St. Project Number: SA 3391 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

		Sierra An	iary trea	Labs, I					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	14:30					
Tetrachloroethene	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	· ·	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometho		100 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8	ine	96.6 %		110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	nn a	99.6 %		115	"	"	"	"	
Surroguie. 4-Bromojiuorovenze	ne	99.0 /0	00-	113					
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	· ·	
Chloromethane	ND	1.0	"	"	"	"	"	n .	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"		"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND ND	1.0	"	"	,,	"	"	"	
1,1-Dichloroethene	ND ND	1.0	"	"	,,	"	"	"	
cis-1,2-Dichloroethene	ND ND	1.0	"	"	"	"	"	"	
			"	"	"	,,	,,	"	
trans-1,2-Dichloroethene	ND ND	1.0	"	,,		"	,,		
1,2-Dichloropropane	ND	1.0	"	,,	.,	"		"	
1,1-Dichloropropene	ND	1.0					"		
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	

Project: Storm Water 2775 Kurtz St. Project Number: SA 3391 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

		olei i a Ai	J						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	5 14:30					
Ethylbenzene	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ine	101 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		96.6 %		110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	101 %	86-	115	"	"	"	"	
C-B07-7 (0603661-07) Liquid		Received:	03/29/06	5 14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	μg/L	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
			"	"	"	"	"	"	
The state of the s			"	"	"	"	"	"	
trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	1.0 1.0							

2775 Kurtz St. San Diego CA, 92110 Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Sampled: 03/28/06 00:00			14:30		<u> </u>			
1,1-Dichloropropene	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	ie	101 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		96.4 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e	98.8 %	86-		"	"	"	"	
o v									
C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received:	: 03/29/06						
C-B08-8 (0603661-08) Liquid Acrolein					B6C3102	03/30/06	03/30/06	EPA 624	
Acrolein	ND	10	μg/L "	14:30	B6C3102	03/30/06	03/30/06	EPA 624	
Acrolein Acrylonitrile	ND ND	10 10	μg/L	14:30					
Acrolein Acrylonitrile Benzene	ND ND ND	10 10 1.0	μg/L "	1 "	"	"	"	"	
Acrolein Acrylonitrile Benzene Bromobenzene	ND ND	10 10	μg/L "	1 "	"	"	"	" "	
Acrolein Acrylonitrile Benzene	ND ND ND ND ND	10 10 1.0 1.0	μg/L " "	1 "	" "	" "	" "	" "	
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform	ND ND ND ND ND ND	10 10 1.0 1.0 1.0	μg/L " " "	1 " " " " " " " " " " " " " " " " " " "	" "	" "	11 11 11	" " " " " " " " " " " " " " " " " " " "	
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND ND	10 10 1.0 1.0 1.0 1.0	μg/L " " "	1 " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	11 11 11	
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride	ND ND ND ND ND ND ND	10 10 1.0 1.0 1.0 1.0 1.0	μg/L " " " " "	1 " " " " " " " " " " " " " " " " " " "	" " " " "	" " " " " "	" " " " "	11 11 11 11	
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene	ND	10 10 1.0 1.0 1.0 1.0 1.0 1.0	μg/L " " " " " "	1 14:30	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	11 11 11 11	11 11 11 11	
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0	μg/L " " " " " "	1 14:30	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	11 11 11 11	11 11 11 11	
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	μg/L " " " "	1 14:30	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11		
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	μg/L " " " " " " " " "	1 14:30	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11		
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L " " " " " " " " " "	1 14:30	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11		
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	μg/L " " " " " " " " " " "	1		11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11		
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L " " " " " " " " " " " "	1 """""""""""""""""""""""""""""""""""""		11 11 11 11 11 11 11 11 11 11 11 11 11			
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L " " " " " " " " " " " " "	1		11 11 11 11 11 11 11 11 11 11 11 11 11			
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L " " " " " " " " " " " " "	1 14:30		11 11 11 11 11 11 11 11 11 11 11 11 11			
Acrolein Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND N	10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L " " " " " " " " " " " " " " "	1 14:30					

Project: Storm Water 2775 Kurtz St. Project Number: SA 3391 San Diego CA, 92110 Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B08-8 (0603661-08) Liquid Sa	ampled: 03/28/06 00:00	Received:	03/29/00	5 14:30					
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		98.2 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		96.6 %		110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	86-	115	"	"	"	"	
C-B04-9 (0603661-09) Liquid Sa	ampled: 03/28/06 00:00	Received:	03/29/00	5 14:30					
Acrolein	ND	10	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
Acrylonitrile	ND	10	"	"	"	"	"	"	
Benzene	ND	1.0	"	"	"	"	"	"	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
2-Chloroethylvinyl ether		1.0	"	"	"	"	"	"	
	ND	1.0							
Chloroform	ND ND	1.0	"	"	"	"	"	"	
			"	"	"	"	"	"	
Chloroform	ND	1.0						" "	
Chloroform Chloromethane	ND ND	1.0 1.0	"	"	"	"	"	"	
Chloroform Chloromethane Dibromochloromethane	ND ND ND	1.0 1.0 1.0	"	"	"	"	"	"	

San Diego CA, 92110

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	5 14:30					
1,1-Dichloroethane	ND	1.0	μg/L	1	B6C3102	03/30/06	03/30/06	EPA 624	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluorometha	ine	100 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		96.6 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	100 %	86-	115	"	"	"	"	

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3391

2775 Kurtz St.Project Number: SA 3391Reported:San Diego CA, 92110Project Manager: Don Ostrand04/07/06 11:55

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

		710114 711	-	1 2400, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	**	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	пе	92.0 %	70-	-125	"	"	"	"	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	пе	93.5 %	70-	-125	"	"	"	"	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	II	
Surrogate: a,a,a-Trifluorotoluer	ne	94.0 %	70-	-125	"	"	"	"	

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3391

2775 Kurtz St.Project Number: SA 3391Reported:San Diego CA, 92110Project Manager: Don Ostrand04/07/06 11:55

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

		71C11 a 7 XII	iuij tieu	1 2400, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	пе	93.0 %	70-	-125	"	"	"	"	
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	ne	91.5 %	70-	-125	"	"	"	"	
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	ne	93.0 %	70-	125	"	"	"	"	

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3391

2775 Kurtz St.Project Number: SA 3391Reported:San Diego CA, 92110Project Manager: Don Ostrand04/07/06 11:55

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series Sierra Analytical Labs, Inc.

		71C11 a 7 XII	-	1 2400, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
C-B07-7 (0603661-07) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluer	ne	91.5 %	70-	-125	"	"	"	"	
C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluer	пе	92.0 %	70-	-125	"	"	"	"	
C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
Benzene	ND	0.50	μg/L	1	B6C3021	03/30/06	03/30/06	EPA 8021B/8015B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"	"	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluer	пе	92.5 %	70-	125	"	"	"	"	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

			<u>-</u>	I Labs, I					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B01-1 (0603661-01) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		142 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xy	lene	101 %	42-	147	"	"	"	"	
C-B03-2 (0603661-02) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	n .	
Surrogate: Decachlorobiphenyl		87.4 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xy	lene	66.6 %	42-	147	"	"	"	"	
C-B05-3 (0603661-03) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		97.0 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xy	lene	70.8 %		147	"	"	"	"	

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3391
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

			J	1 Labs, 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B05-4 (0603661-04) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		87.0 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	61.2 %	42-	147	"	"	"	"	
C-B06-5 (0603661-05) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		88.4 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	66.2 %		147	"	"	"	"	
C-B07-6 (0603661-06) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		84.6 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	63.0 %	42-	147	"	"	"	"	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Polychlorinated Biphenyls by EPA Method 8082 Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-B07-7 (0603661-07) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		94.4 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyl	ene	73.0 %	42-	147	"	"	"	"	
C-B08-8 (0603661-08) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/00	6 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	03/31/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		87.2 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyl	ene	60.0 %	42-	147	"	"	"	"	
C-B04-9 (0603661-09) Liquid	Sampled: 03/28/06 00:00	Received:	03/29/06	5 14:30					
PCB-1016	ND	0.50	μg/L	1	B6D0201	03/31/06	04/01/06	EPA 8082	
PCB-1221	ND	0.50	"	"	"	"	"	"	
PCB-1232	ND	0.50	"	"	"	"	"	"	
PCB-1242	ND	0.50	"	"	"	"	"	"	
PCB-1248	ND	0.50	"	"	"	"	"	"	
PCB-1254	ND	0.50	"	"	"	"	"	"	
PCB-1260	ND	0.50	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		91.2 %	42-	147	"	"	"	"	
Surrogate: Tetrachloro-meta-xyle	ene	64.2 %	42-	147	"	"	"	"	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals by EPA 200 Series Methods - Quality Control Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B6D0311 - EPA 200 Series							***		<u> </u>	
Blank (B6D0311-BLK1)				Prepared:	04/03/06	Analyzed	l: 04/04/06			
Aluminum	ND	0.063	mg/L	*						
Iron	ND	0.064	"							
Zinc	ND	0.024	"							
Blank (B6D0311-BLK2)				Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	ND	0.063	mg/L							
Iron	ND	0.064	"							
Zinc	ND	0.024	"							
LCS (B6D0311-BS1)				Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	0.191	0.063	mg/L	0.200		95.5	75-125			
Iron	0.214	0.064	"	0.200		107	70-130			
Zinc	0.196	0.024	"	0.200		98.0	85-115			
LCS (B6D0311-BS2)				Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	0.189	0.063	mg/L	0.200		94.5	75-125			
Iron	0.214	0.064	"	0.200		107	70-130			
Zinc	0.193	0.024	"	0.200		96.5	85-115			
Matrix Spike (B6D0311-MS1)	Sou	urce: 060365	8-01	Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	2.50	0.063	mg/L	0.200	2.1	200	70-130			QM-0
Iron	3.36	0.064	"	0.200	3.4	NR	70-130			QM-07
Zinc	0.228	0.024	"	0.200	0.041	93.5	70-130			
Matrix Spike (B6D0311-MS2)	Sou	urce: 060366	1-04	Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	0.334	0.063	mg/L	0.200	0.13	102	70-130			
Iron	0.345	0.064	"	0.200	0.13	108	70-130			
Zinc	0.204	0.024	"	0.200	0.014	95.0	70-130			

Lead

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Metals by EPA 200 Series Methods - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6D0311 - EPA 200 Series										
Matrix Spike Dup (B6D0311-MSD1)	Sou	rce: 060365	8-01	Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	2.51	0.063	mg/L	0.200	2.1	205	70-130	0.399	20	QM-07
Iron	3.38	0.064	"	0.200	3.4	NR	70-130	0.593	20	QM-07
Zinc	0.228	0.024	"	0.200	0.041	93.5	70-130	0.00	20	
Matrix Spike Dup (B6D0311-MSD2)	Sou	rce: 060366	1-04	Prepared:	04/03/06	Analyzed	1: 04/04/06			
Aluminum	0.346	0.063	mg/L	0.200	0.13	108	70-130	3.53	20	
Iron	0.356	0.064	"	0.200	0.13	113	70-130	3.14	20	
Zinc	0.208	0.024	"	0.200	0.014	97.0	70-130	1.94	20	
Batch B6D0315 - EPA 200 Series										
Blank (B6D0315-BLK1)				Prepared:	04/03/06	Analyzed	1: 04/05/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
LCS (B6D0315-BS1)				Prepared:	04/03/06	Analyzed	1: 04/05/06			
Copper	101	10	μg/L	100		101	85-115			
Lead	102	4.0	"	100		102	85-115			
Matrix Spike (B6D0315-MS1)	Sou	rce: 060366	1-01	Prepared:	04/03/06	Analyzed	1: 04/05/06			
Copper	104	10	μg/L	100	4.2	99.8	70-130			
Lead	99.9	4.0	"	100	ND	99.9	70-130			
Matrix Spike Dup (B6D0315-MSD1)	Sou	rce: 060366	1-01	Prepared:	04/03/06	Analyzed	1: 04/05/06			
Copper	105	10	μg/L	100	4.2	101	70-130	0.957	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

4.0

100

ND

102

70-130

2.08

20

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

RPD

%REC

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6D0316 - EPA 200 Series										
Blank (B6D0316-BLK1)				Prepared:	04/03/06	Analyzed	: 04/05/06			
Copper	ND	10	μg/L							
Lead	ND	4.0	"							
LCS (B6D0316-BS1)				Prepared:	04/03/06	Analyzed	: 04/05/06			
Copper	101	10	μg/L	100		101	85-115			
Lead	99.6	4.0	"	100		99.6	85-115			
Matrix Spike (B6D0316-MS1)	Sour	ce: 060366	1-01	Prepared:	04/03/06	Analyzed	: 04/05/06			
Copper	108	10	μg/L	100	4.2	104	70-130			
Lead	104	4.0	"	100	ND	104	70-130			
Matrix Spike Dup (B6D0316-MSD1)	Sour	ce: 060366	1-01	Prepared:	04/03/06	Analyzed	: 04/05/06			
Copper	109	10	μg/L	100	4.2	105	70-130	0.922	20	
Lead	104	4.0	"	100	ND	104	70-130	0.00	20	

Project: Storm Water
Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Total Recoverable Petroleum Hydrocarbons (TRPH) by IR - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6C3104-BLK1)				Prepared & An	alyzed: 03/30/	06		
TRPH	ND	1.0	mg/L	*				
LCS (B6C3104-BS1)				Prepared & An	alyzed: 03/30/	06		
TRPH	10.6	1.0	mg/L	10.0	106	80-120		
LCS (B6C3104-BS2)				Prepared & An	alyzed: 03/30/	06		
TRPH	10.3	1.0	mg/L	10.0	103	80-120		
LCS Dup (B6C3104-BSD1)				Prepared & An	alyzed: 03/30/	06		
TRPH	10.2	1.0	mg/L	10.0	102	80-120	3.85	30

San Diego CA, 92110

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B6C3102 - EPA 5030B P & T

Blank (B6C3102-BLK1)				Prepared & Analyzed: 03/30/06
Acrolein	ND	10	μg/L	
Acrylonitrile	ND	10	"	
Benzene	ND	1.0	"	
Bromobenzene	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
Carbon tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
2-Chloroethylvinyl ether	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
trans-1,3-Dichloropropene	ND	1.0	"	
Ethylbenzene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
Toluene	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
m,p-Xylene	ND	1.0	"	

Trichloroethene

Project Number: SA 3391
Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Volatile Organics by EPA Method 624 - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6C3102-BLK1)				Prepared &	& Analyz	ed: 03/30/	06			
o-Xylene	ND	1.0	μg/L		•					
Methyl tert-butyl ether	ND	1.0	"							
Surrogate: Dibromofluoromethane	51.0		"	50.0		102	86-118			
Surrogate: Toluene-d8	48.0		"	50.0		96.0	88-110			
Surrogate: 4-Bromofluorobenzene	49.6		"	50.0		99.2	86-115			
LCS (B6C3102-BS1)				Prepared &	& Analyz	ed: 03/30/	06			
Benzene	50.8	1.0	μg/L	50.0		102	80-120			
Chlorobenzene	55.2	1.0	"	50.0		110	80-120			
1,1-Dichloroethene	46.6	1.0	"	50.0		93.2	80-120			
Toluene	52.1	1.0	"	50.0		104	80-120			
Trichloroethene	53.2	1.0	"	50.0		106	80-120			
Matrix Spike (B6C3102-MS1)	Sourc	e: 060367	5-01	Prepared &	& Analyz	ed: 03/30/	06			
Benzene	49.7	1.0	μg/L	50.0	ND	99.4	37-151			
Chlorobenzene	51.6	1.0	"	50.0	ND	103	37-160			
1,1-Dichloroethene	43.8	1.0	"	50.0	ND	87.6	50-150			
Toluene	50.0	1.0	"	50.0	ND	100	47-150			
Trichloroethene	50.7	1.0	"	50.0	ND	101	71-157			
Matrix Spike Dup (B6C3102-MSD1)	Sourc	e: 060367	5-01	Prepared &	& Analyz	ed: 03/30/	06			
Benzene	51.0	1.0	μg/L	50.0	ND	102	37-151	2.58	30	
Chlorobenzene	54.0	1.0	"	50.0	ND	108	37-160	4.55	30	
1,1-Dichloroethene	45.1	1.0	"	50.0	ND	90.2	50-150	2.92	30	
Toluene	51.8	1.0	"	50.0	ND	104	47-150	3.54	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

52.7

1.0

50.0

ND

105

71-157

3.87

30

Ethylbenzene

Gasoline Range Hydrocarbons (C4-C12)

Ocean Blue Env. Services Project: Storm Water 2775 Kurtz St. Project Number: SA 3391

38.6

517

0.50

50

2775 Kurtz St.Project Number: SA 3391Reported:San Diego CA, 92110Project Manager: Don Ostrand04/07/06 11:55

BTEX/MTBE/TVPH-Gasoline Range Hydrocarbons (C4-C12) by EPA Method 8021B and 8015B in series - Quality Control Sierra Analytical Labs, Inc.

Spike

40.0

600

ND

ND

96.5

86.2

32-160

50-150

21.8

20.2

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6C3021 - EPA 5030B P & T										
Blank (B6C3021-BLK1)				Prepared	& Analyzo	ed: 03/30/	06			
Benzene	ND	0.50	μg/L							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	"							
Methyl tert-butyl ether	ND	5.0	"							
Gasoline Range Hydrocarbons (C4-C12)	ND	50	"							
Surrogate: a,a,a-Trifluorotoluene	19.1		"	20.0		95.5	70-125			
LCS (B6C3021-BS1)				Prepared	& Analyz	ed: 03/30/	06			
Benzene	32.3	0.50	μg/L	40.0		80.8	80-120			
Toluene	35.9	0.50	"	40.0		89.8	80-120			
Ethylbenzene	33.3	0.50	"	40.0		83.2	80-120			
Gasoline Range Hydrocarbons (C4-C12)	568	50	"	600		94.7	80-120			
Matrix Spike (B6C3021-MS1)	Sour	ce: 060366	1-09	Prepared	& Analyz	ed: 03/30/	06			
Benzene	29.9	0.50	μg/L	40.0	ND	74.8	39-150			
Toluene	30.3	0.50	"	40.0	ND	75.8	46-148			
Ethylbenzene	31.0	0.50	"	40.0	ND	77.5	32-160			
Gasoline Range Hydrocarbons (C4-C12)	422	50	"	600	ND	70.3	50-150			
Matrix Spike Dup (B6C3021-MSD1)	Sour	ce: 060366	1-09	Prepared	& Analyz	ed: 03/30/	06			
Benzene	37.2	0.50	μg/L	40.0	ND	93.0	39-150	21.8	30	
Toluene	37.5	0.50	"	40.0	ND	93.8	46-148	21.2	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

30

30

%REC

Batch B6D0201 - EPA 3510C Sep Funnel

San Diego CA, 92110

Project: Storm Water Project Number: SA 3391 Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B6D0201-BLK1)				Prepared & Ar	nalyzed: 03/31/	06	
PCB-1016	ND	0.50	μg/L				
PCB-1221	ND	0.50	"				
PCB-1232	ND	0.50	"				
PCB-1242	ND	0.50	"				
PCB-1248	ND	0.50	"				
PCB-1254	ND	0.50	"				
PCB-1260	ND	0.50	"				
Surrogate: Decachlorobiphenyl	0.212		"	0.500	42.4	42-147	

Surrogate: Tetrachloro-meta-xylene	0.261	"	0.500	52.2	42-147
LCS (B6D0201-BS1)		Pro	epared & Analyzed:	03/31/0	06

PCB-1260	1.91	0.50	μg/L	2.00	95.5	80-120		
LCS (B6D0201-BS2)				Prepared & Ar	nalyzed: 03/31/	06		
PCB-1260	1.74	0.50	μg/L	2.00	87.0	80-120		
LCS Dup (B6D0201-BSD1)				Prepared & Ar	nalyzed: 03/31/	06		
PCB-1260	1.86	0.50	$\mu g/L$	2.00	93.0	80-120	2.65	30

Ocean Blue Env. Services

Project: Storm Water
2775 Kurtz St.

Project Number: SA 3391
San Diego CA, 92110

Project Manager: Don Ostrand

Reported: 04/07/06 11:55

Notes and Definitions

H-01 Sample received without sufficient time to complete analysis within recommended holding time.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

FRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Client: Sierra Analytical Labs, Inc.

26052 Merit Circle, Suite #105

Laguna Hills, CA 92653

Attention: Tracy Collins
Sample: Liquid/9 Samples

#0603661

Project Name:

P.O. Number: 0603661

Method: EPA 8015B

Investigation: Glycols

REPORT

Laboratory No: 953349

Report Date: April 4, 2006 Sampling Date: March 28, 2006

Receiving Date: March 31, 2006 Analysis Date: April 4, 2006

Units: mg/L

Dilution Factor: 1
Reported By: MK

Page 1 of 1

Analytical Results

		Allaly and a second a second and a second and a second and a second and a second an	Allalytical Nesdits		
Cample ID	Sample	Ethylene Glycol	Propylene Glycol	Surrogate	Surrogate
Sample	Description			(1-Butanol)	% Recovery
705739-MB	Method Blank	ND	ND	105	105%
953349-1	0603661-01	ND	ND	101	101%
953349-2	0603661-02	ND	ND	108	108%
953349-2	0603661-03	ND	ND	108	108%
953349-4	0603661-04	ND	ND	85.3	85%
953349-5	0603661-05	ND	ND	110	110%
953349-6	0603661-06	ND	ND	107	107%
953349-7	0603661-07	ND	ND	82.8	82.8%
953349-8	0603661-08	ND	ND	87.9	87.9%
953349-9	0603661-09	ND	ND	82.6	82.6%
Practical Quantitation Limits	ation Limits	5.0	5.0	SC = 100	APR = 50-200%
Sample RLs		5.0	5.0		
				The second secon	

ND: Not detected, or below limit of detection.

RL: Reporting limit, or least amount of analyte quantifiable based on average sample size used and analytical technique employed.

APR: Allowable Percent Recovery

SC: Spike Concentration

Rossina Tomova, Project Manager Analytical Services, Truesdail Laboratories, Inc. This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality of CAMO, or apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

> REPORT 26052 Merit Circle, Suite #105

Sierra Analytical Labs, Inc.

Client:

Laguna Hills, CA 92653

-iquid/9 Samples Tracy Collins

Attention: Sample: #0603661 0603661

Project Name: P.O. Number: **EPA 8015B**

Method Number: Investigation:

Glycols

April 4, 2006 953349 QA/QC Batch No: Laboratory No:

March 28, 2006 March 31, 2006 Receiving Date: Report Date: Sampling Date:

April 4, 2006 mg/L Analysis Date: Units:

¥ Reported By:

Quality Control/Quality Assurance Calibration Checks Report

	Percent	Difference	19.0%	10.4%
	Recovered	Concentration	59.5	55.2
MRCCS	Spiked	Concentration	20.0	20.0
	Flag		PASS	PASS
	Percent	Difference	19.9%	1.23%
	Recovered	Concentration	0.09	50.6
MRCVS	Spiked	Concentration	50.0	50.0
	Parameter		Ethylene Glycol	Propylene Glycol

PASS PASS

Report	
Spikes	
Assurance	
Control/Quality	
Quality	

	Spike	Reco	Recovered	Percent Recovery	Recovery	RPD		Acc	Accuracy
Parameter	Conc.	Concentr	ntration	(%)	(9)	(%)	Flag	Contr	Control Limits
		CS	CSD	CS	CSD			RPD	% Recovery
Ethylene Glycol	50.0	61.9	62.0	124%	124%	0.16%	PASS	20	70-130
Propylene Glycol	50.0	50.5	50.6	101%	101%	0.27%	PASS	20	70-130

MRCVS: Mid Range Calibration Verification Standard

MRCCS: Mid Range Calibration Check Standard (second source)

LCSD: Laboratory Control Spike Duplicate LCS: Laboratory Control Spike

RPD: Relative Percent Difference

ND: Not Detected

Flag: "Pass" if within Control Limits; otherwise "Fail"

Analytical Services, Truesdail Laboratories, Inc. Rossina Tomova, Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

CHAIN OF CUSTODY RECORD

SIERRAANALYTICAL

FAX: 949•348•9115 TEL: 949•348•9389

26052 Merit Circle Suite 105 Laguna Hills, CA 92653

28 Date: **03**/**1**7/ **06**

Lab Project No.: OCC 366

Geotracker EDD Info: Field Point Names/ mos. Client LOGCODE Site Global ID Comments Return to Client ☐ Lab Disposal* Sample Disposal: Archive Other Storage Location ZIES Chilled - Temp. ("C) 4.0 FOR LABORATORY USE ONLY - Sample Receipt Conditions: Preservatives - Ventied By, X X Total Number of Containers Submitted to * - Samples determined to be hazardous by SIERRA will be returned to CLIENT. X Total Number of Containers Recieved by DISSOLUED The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under SIERRA's Terms and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. $\frac{\overline{X}}{X}$ メメ X X Other. Analysis Requested 蚁 CHERSE 3710 X, X 又 Laboratory SPECIFIC CONDUCTANCE Laboratory Appropriate Sample Container X X Properly Labelled X IQUAT 242BEHDED 2011DS Sample Seals X Intact マス 8 幼 対 3/63/8 Containers STATE OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PER No. of <u>ه</u> 0 D 5 Day 6 24 Hour 72 Hour 9 0 0 ٥ 0 Time: Date: Time: Date: Container 2/2 ☐ Immediate 4 Day 81339 Preservative Client Project ID リジ なのの Turn Around (Carrier/Waybill No.) るるで Matrix Received By: Shipped Via: Received By Received By Company: Client Proj. Mgr.: Don OSTRAND/RICHARD GILB Time Relinquished By Done Ly Cothern 5.29.06
Company OCE 19 H BinE 1430 1 Trung 77,836 SANDIEGO CM 92110 Date Time: Date Date DONALD OSTRAND Client OCEAH BLUE / SDCRAH Client Tel. No.: (619) 294 - 6682 Client Fax. No.: (619) 294 - 6143 Client Address: 275 Kurtz ST. Sierra No. S S 8 3 5 -KYYB いるドボ Client Sample ID. C-B07-6 C-305-3 C-B03-1 Special Instructions: C-805-4 2-B06-5 C-B07-7 C-808-8 C-B04-9 C-801-Sampler Signature: Relinquished By inquished By Rev: 011302

CHAIN OF CUSTODY RECORD

SIERRAANALYTICAL
TEL: 949•348•9389
FAX: 949•348•9115
26052 Merit Circle• Suite 105•Laguna Hills, CA•92653

138/06 19/030. Page 2 of 2

Lab Project No.: 6603661

	Geotracker EDD Info:		Client LOGCODE			Site Global ID		Field Point Names/ Comments											Sample Disposal:	Return to Client	☐ Lab Disposal*	Archive mos.	Other		ons:	2	E3/154	ry Copy, Pink - Field Personnel Cop
Z Analysis Requested	KB		136	90 ₩;	11k	70° 00' 00'	A S	101 100 100 100 100 100 100 100 100 100	XXXXXXX	XXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	メメメメメメ	メメメメメメイン	メバメンガンガイ	メイメメメ スメ ノス	メメメメメメメメメ	メイメメメオイオイ		Total Number of Containers Submitted to	70 Laboratory	The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under	SIEKKA's Lerns and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. * - Samples determined to be hazardous by SIERRA will be returned to CLIENT.	Total Number of Containers Recieved by	Laboratory	R LABORATORY USE ONLY - Sample Receipt Conditi	Intact Chilled - Temp (*C) 1.	Sample oceas Properly Labelled Appropriate Sample Container	TTION: White - To Accompany S
			24 Hour	72 Hour	1 50 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mohile	MODING	No. of Containers	0	0	(0)	0	0	(0)	0]	[0	a)				3/23/64	1/930 Time:	Date:	Time:	Date:	Тіте:		ITSIG
Olivet Project ID.	Chemit roject III.	1	Then A cound		1 4 Dav	<i>-</i>	T T T T T T T T T T T T T T T T T T T	Matrix Preservative Container Type	MATER 1 CE P/G								→		:0:	aybill No.).	that I want	5/8/20	3y:		3y:			
			0	**************************************	ente anno ma eministrativa de prese plujum Apallon (cara de sustantiva		GILB	Time Ma											Shipped Via:	(Carrier/Waybill No		ļ		Company:	Received By:	Company:		
Client.OCEAN BLUE / SDCRMA	ST	everence valdajo instalijajojo instalijajojo instalijajojo instalijajojojo instalijajojojo instalijajojo instalijajojo	CB 92110		.82	743	>/RICHARD	Sierra Date	1 \$128/06		2	20		300	→ 3		2 trans	NAND	cin 3.29	1430 Time:		Time:	Date	Тте:				
	Client Address: 275 Kultz	SUITE	SAN DIEGO, C	-		Client Fax. No.: (CI9) 294-6743	Client Proj. Mgr.: Don OSTRAND/RICHARD	Client Sample ID. Sin	7-Bol-1	C-B03-2	C-805-3 03	K-305-4	C-806-5					一个本事	mall (DONALD O	2 Schimmischer R. C.	COMPANY OCEAN BLUE	3 Refinquished By:	Company:	4 Relinquished By:	Company:	Special Instructions:	D 011203